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Probabilistic description of traffic breakdowns
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We analyze the characteristic features of traffic breakdown. To describe this phenomenon we apply the
probabilistic model regarding the jam emergence as the formation of a large car cluster on a highway. In these
terms, the breakdown occurs through the formation of a certain critical nucleus in the metastable vehicle flow,
which enables us to confine ourselves to one cluster model. We assume that, first, the growth of the car cluster
is governed by attachment of cars to the cluster whose rate is mainly determined by the mean headway distance
between the car in the vehicle flow and, maybe, also by the headway distance in the cluster. Second, the cluster
dissolution is determined by the car escape from the cluster whose rate depends on the cluster size directly. The
latter is justified using the available experimental data for the correlation properties of the synchronized mode.
We write the appropriate master equation converted then into the Fokker-Planck equation for the cluster
distribution function and analyze the formation of the critical car cluster due to the climb over a certain
potential barrier. The further cluster growth irreversibly causes jam formation. Numerical estimates of the
obtained characteristics and the experimental data of the traffic breakdown are compared. In particular, we
draw a conclusion that the characteristic intrinsic time scale of the breakdown phenomenon should be about 1
min and explain the case why the traffic volume interval inside which traffic breakdown is observed is
sufficiently wide.
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I. INTRODUCTION: TRAFFIC BREAKDOWN AS A [3]. The recent analysis of single-vehicle data by Neubert
NUCLEATION PHENOMENON et al. [8], in particular, confirmed these features and also

discovered fundamental microscopic properties distinguish-

The spontaneous formation of traffic jams on highways"d Synchronized mode from other traffic states.

has attracted attention over the last years because of two | N€oretical description of the jam formation is far from
reasons. The first is the importance of this problem for traffic eing developed well because the synchronized mode pos-

engineering, especially concerning the feasibility of attainin pesses extremely complex structiBg For example, it com-

e i . AR gprises a certain continuum of quasistable states, so, matches
the I|m|t.capaC|ty of traffic n_etworks and qugntn‘ymg It T_h.e a whole two-dimensional region on the phase plane “vehicle
second is the fact that the jam formation nicely exempl'f'esdensity—traffic volume” in contrast to the free flow state.

the existence of various phase states and transitions betwegpyyever, tackling the question of how to regulate traffic
them in statistical systems comprising elements with motifiow on highways, for example, by controlling the speed
vated behavior, which is a novel branch of physics. Accordyimitation in order to prevent the jam formation we may
ing to the recent notion proposed by Kerrisee, e.g., Refs.  rough out the problem. Indeed, for this purpose it is suffi-
[1-3]) based on the experimental d@ta-7] the jam forma-  cient to analyze the conditions giving rise to jams rather than
tion is of sufficiently complex nature. In particular, it pro- the jam evolution itself. Such a standpoint is justified, in part,
ceeds mainly through the sequence of two phase transitionsy the aforementioned phase transitions being of the first
free flow (F)— synchronized modeS)— stop-and-go pat- order. The free flow state, presumably, should have the fea-
tern (J) [7]. Both of these transitions are of the first order, sibility to exist at the given car density or inside its certain
i.e., they exhibit breakdown, hysteresis, and nucleation efaeighborhood. This might be the necessary requirement for
fects[6]. The F—J transition can occur directly if only the jam formation at a fixed vehicle density, or for appearance of
synchronized mode is suppressed by a road heterogeneityth the jam phase and the synchronized mode at a fixed
traffic volume. Second, the jam formation proceeds via the
nucleation mechanism but not in a regular manner. There-

*Electronic address: reinhart.kuehne@dlr.de fore, the key point in the emergence of a jam is the random
"Electronic address: reinhard.mahnke@physik.uni-rostock.de  occurrence of its critical nucleus inside the synchronized
*Electronic address: ialub@fpl.gpi.ru mode or free flow.
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The jam formation manifests itself in the traffic break- - 10 T
down, i.e., in a sharp drop of the traffic volume to a substan- 2 0.8 i
tially lower value. Detecting these events one can get the rate = 0.6 4 |
of the critical nucleus generation depending on the road con- § 0'4 1 |
ditions and the traffic state. In this way the main attention is g TN
shifted to the experimental and theoretical analysis of the = 0.2 | 7
probabilistic features of jam formation regarding the charac- 8 00 ; —
teristic mean values of the traffic volume as phenomenologi- & g2 e
cal parameterf9—-12]. Such a probabilistic description of the 0 20 40 60 80 100
traffic breakdown is the main purpose of the present paper. number of cars passed detector

At the first glance the problem seems hopeless until the
model of the synchronized mode is developed. Nevertheless, FIG. 1. lllustration of the speed autocorrelation vs the number of
there are circumstances enabling us to make a step towardars that have passed a fixed detector. Based on the observations by
this problem right nowsee also Ref.13]). The matter is that Neubertet al. [8].
the F— S transition is of another nature than tBe-J tran-
sition. The former is due to a sharp decrease in the overtalarising inside the “head” of this complex jam, in the region
ing frequency, giving rise to the synchronized mode, whereasf synchronized mode adjacent the bottleneck. Therefore the
the latter is caused by the pinch effe(gee, e.g., Refs. main characteristics of the breakdown phenomenon may be
[1-3]). Thus fluctuations in the vehicle density and velocity related to intrinsic processes taking place inside the synchro-
are not the main causes of tle— S transition, but other nized mode on not too large spatial scales. The latter justifies
characteristic parameters of traffic flow are relev@ftalso  our attempt to describe traffic breakdown ignoring the com-
Ref.[14]). By contrast, just these fluctuations give rise to theplex spatial structure of the metastable traffic state inside
jam in the synchronized traffic flow. As a result, the thresholdwhich critical jam nuclei originate.
of the F— S transition turns out to be remarkably less than Processes similar to the traffic breakdown are widely met
that of the jam formation and can be attained at lower valueg physical systems. For example, water condensation in su-
of the vehicle density. So, the generation rate of critical nupersaturated vapor proceeds via formation of small atom
clei for the former transition has to be great in comparisorclusters of a critical size. Keeping in mind this analogy be-
with the latter one. Thus, on time scales characterizing théween the traffic breakdown and the phase transitions in
occurrence of critical jam nuclei the traffic state with respectphysical systems, Mahnket al. [15,16] proposed a kinetic
to the transitions between the free flow and synchronizeépproach based on the stochastic master equation describing
mode is quasistationary. Therefore the formation of a criticathe jam formation in terms of the attachment of individual
jam nucleus is the leading nonequilibrium process limitingcars to their cluster. However, the particular form of the de-
the traffic breakdown. The latter feature allows us to confineveloped master equation does not allow for the jam forma-
our consideration solely to the jam nucleus generation and ttion being the first order phase transition and, thus, the traffic
regard the synchronized mode and the free flow pHidse breakdown. In the present paper we generalize this kinetic
they coexist in the case under considergtias one traffic approach to describe the latter phenomenon.
state. Moreover, since a jam forms actually inside the syn- However, before passing directly to the model we make
chronized mode where the vehicle motion in different laneswo comments clarifying its original part and the feasibility
is strongly correlated we may apply to a single-lane road amf comparing the results to be obtained within the model and
approximation that treats all the cars moving in differentthe available experimental data.
lanes on a multilane highway and being neighbors across the First, we recall the experimental data enabling us to esti-
highway as a single effective macrovehicle consisting ofmate the characteristic siag, of vehicle clusters that are
many cars. The macrovehicle concept is partly justified bysmall enough so the behavior of drivers inside them seems to
the empirically observed fact that fluctuations in the down-be special. From our point of view the multilane correlations
stream flow leaving a freeway bottleneck can proceed within the vehicle motion are due to the drivers taking into ac-
out the traffic state change, even their amplitude attains 30%ount the behavior of all the cars, including also the cars in
of the mean traffic volum@d—13. In any case, fluctuations the neighboring lanes, which are inside the region accessible
in the traffic flow volume near its breakdown are of macro-to observation. Therefore the synchronized mode has to ex-
scopic nature and the critical nucleus of traffic jam has tachibit strong correlations in this region. Figure 1 shows the
include many vehicles. This feature is also pointed to by thespeed autocorrelation function vs the number of cars that
observed breakdown near an on-ramp occurring each timeave passed a fixed detector that was experimentally found
after a large vehicle cluster entered the freeway strglm  in the synchronized modE8] (see also Ref[17]). We see

It should be pointed out that the real structure of con-that the car velocities are strongly correlated over scales
gested traffic near a highway bottleneck is sufficiently com-spanning some ten vehicles, i.e., a car cluster of this size,
plex, it contains the region of synchronized mode located imy=20, makes up actually a certain fundamental unit of the
the close proximity of the bottleneck, the preceding upstreansynchronized mode. In the free flow no such long-distance
region of moving narrow jams transformed into wide jamscorrelations have been observed.
[13]. However, it is quite reasonable to consider this struc- Second, the model to be developed considers the break-
ture as being induced by the traffic breakdown processedown phenomenon for traffic flow on a homogeneous road,
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whereas the available experimental data were obtained for n 41 P(n+1)
traffic flow near highway bottlenecks. Therefore it could be w4 (n) G 0 w_(n+1)
thought at first glance that their comparison is not justified. It n P(n)
would be unjustified indeed if the traffic breakdown near
highway bottlenecks and far from them, i.e., on homoge- Q wi(n—1) w_(n)
neous segments of highways, would proceeddifferent n—1
mechanisms. However, applying to similar phenomena in . . .
physical media we see that a new phase inside a metastable  S1Z€ growth dissolution
one arises through generation of the critical nuclei in homo-
geneous as well as heterogeneous systems. The critical
nucleus size is determined by the competition between th@V
he
i

{) P(n—1)

FIG. 2. Schematic illustration of the cluster transformations.

increase in the surface free energy and the decrease in t —n) of the *freely” moving cars and therefore the longer

bulk one when a nucleus of new phase appears. The ob- the headway distandge(n).

served quantitative difference in the rate of phase transition When a cluster arises on the road its further growth is due
q P to the attachment of the “free” cars to its upstream boundary,

Icnaljzg dngﬁ,eh?;m%?nneu%lf;ugr}grrze;?frggteegegus}h?esd':trg Whereas the cars located near its downstream boundary ac-
y y St elerate to leave it, which decreases the cluster size. These

poundary. .S(?' the general properties of these phase.tran rocesses are treated as random changes of the cluster size
tions are similar in both cases and can be analyzed using the : S . .

. : y =1 (Fig. 2 and the cluster evolution is described in terms
same physical concepts. Roughly speaking, the heteroge:

NGRS : A of time variations of the probability functio®(n,t) for the
neous nucleation is singled out mainly by an individual form | be of i . hen followi hnk |
factor only. cluster to be of siza at timet. Then following Mahnkeet al.

The physics of traffic breakdown is currently far from [15,16 we write the master equation governing the cluster

being well understood. Therefore if it does proceed by thequWth’

nucleation mechanism and the high probability of jam emer- aP(n,H)=w, (n—1)P(n—1t)

gence near a highway bottleneck is due to the effect the

bottleneck on the particular properties of car clusters only, +w_(n+1)P(n+1t)—[w_(n)

then a model for homogeneo(sr quasihomogeneousoad

may be applied to its description. There is a natural way to
verify this assumption. It is to compare the characteristicWhere the cluster size@ meets the inequality €n<(N
properties predicted by such a model and the observed datg.l) The transition ratew, (n) andw_(n) are illustrated

If the model does predict something new or previously un- Fi.g 2, depending gengrally on thie cluster sizeThe
clear then its application to the fraific breakdown also neaﬁgormat.ion, and dissolution of the maximum possible cluster
highway bottleneck is justified, at least, to understand th

basic features of the phenomenon. This question will be disegontalnmg all the cars is described by the equation

cussed in detail in Sec. Il aP(N,H)=w, (N—1)P(N—1})

+w,(n)]P(n,t), (1)

Il. PROBABILISTIC MODEL FOR THE CAR —W_(N)P(N,t), (2

AGGREGATION . .
GGREGATIO whereas the emergence of the jam seed, the cluster consisting

A. Discrete description: Master equation of one car called below precluster, obeys the equation

We consider traffic flow on a single-lane road and study S P(01)= 1YP(11)— 0)P(0t 3
the spontaneous formation of a jam regarded as a large car POH=w-(L)PLH =W, (0)P0L). ®

cluster arising on the road. Instead of dealing with a certainyere the functiorP(0}) is the probability of no cluster on

road part of lengthL and imposing some boundary condi- the road. At the initial time¢=0 no cluster is assumed to be
tions at its entries and exits we examine a circular road of, the road

lengthL with N cars moving on it. All the cars are assumed

to be identical vehicles of effective lengtl,, and can make P(n,0)= 8o, (4)

up two phases. One of them is the set of “freely” moving

cars and the other is a single cluster. The cluster is specifieethere s, is the Kronecker’s delta. The system of equations
by its sizen, the number of aggregated cars. Its internal(1)—(3) subject to the initial conditiod) provides the proba-
parameters, namely, the headway distamgg;, (i.e., the dis-  bilistic description of the cluster formation.

tance between the front bumper of a chosen car and the back Special attention should be paid to the question as to what
bumper of the following oneand, consequently, the velocity the precluster is. The model proposes the following. When
vust Of cars in the cluster are treated as fixed values indethere is no cluster on the road, i.e., all the cars move
pendent of the cluster size We note that in the model under “freely,” the velocity of one of them can randomly drop
consideration there can be only one cluster on the road. Théown to its valuev g in the cluster. Such a car is regarded
“free” flow phase is specified also by the correspondingas the precluster, a size-one cluster. When a precluster has
headway distanch;.{n) that, however, depends on the car arisen its further evolution follows the scheme shown in Fig.
cluster sizen. The larger the cluster is, the less is the number2. The precluster concept may be justified by recalling the
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FIG. 3. The headway distantg,.,. in the “free” flow phase vs )
the cluster relative volume=n/N. A qualitative sketch. FIG. 4. The detachment ratg_(n) vs the cluster sizen. A
qualitative sketch.

problem we deal with initially, i.e., the breakdown processes . ) )
in multilane traffic flow. The cars under consideration actu-Vhich together with Eq(6) gives the attachment rate as a
ally match small vehicle clusters of the synchronized modefunction of the cluster size. Here we have introduced the
macrovehicle, arising in traffic flow on a multilane highway following traffic flow parametersp=N/L being the mean
and comprised of real vehicles moving synchronously at difvalue of the car density on the road, its maximum possible
ferent lanes. Therefore the precluster is actually as a certaif@!u€pim=1/(Icat Neys) for the given road, and the relative
sufficiently small cluster of the synchronized mode. Keepingvolume 7=n/N of the cluster with respect to the initial vol-
in mind the relatively low threshold of thE— S transition, ~ume of the “free” flow state.
we will assume the precluster generation as well as the pre- N order to compare the cluster growth due to the car
cluster dissipation to be intensive processes so that th_@ttachment with the precluster generation we specify its rate
“free” flow phase, n=0, and the precluster state=1, N terms of
come into quasiequilibrium on time scales needed for the
critical cluster nucleus to arise. In particular, in no case the
precluster emergence limits the cluster evolution, so, the par- here e is a phenomenoloaical factor and we formally set
ticular details of the precluster formation has no substantiaYV_ - € phe gical fact mally
effect on the traffic breakdown. n=0 in expression6). Keeping in mind the aforesaid about
At the next step we should specify the transition ratesthpf precluster emergence, we assume ihe faciome gbput
w.(n) andw_(n). Let us apply to the optimal velocity unit, e~1, or at least not to be small enough to limit the

model assuming the velocity of the “freely” moving cars _cluster formation, so its particular numerical value is of no
as well as the clustered cars to be determined directly by thlemportance. . .
The rate of the cars escaping from the cluster at its down-

corresponding headway distanceaccording to the formula stream front is written agsee also Fig. ¥

w_ (0)=ew?Y(0), (8

hP 1 1-¢() ¢(n)
=9(h):==vpap————. 5 — —
v=d(h)=v hP+DB, © W T T ©

HereDyy is the characteristic value of the headway distancevhere the valuer(n) can be interpreted as the characteristic
at which drivers begin to feel themselves “free” and their time needed for the first car in the cluster to leave it and to go
velocity approaches the maximumy,,. The parametep  out from its downstream boundary at a distance about the
>1 allows for different shapes of the functiai(h). The  headway distancéy.(n) in the current “free” flow state.
larger the value of is, the sharper is the dependent€h).  The functiong(n) allows for the dependence of the detach-
Casep=2 is often used15,16. A car attaches itself to the ment timer(n) on the cluster siza. We note that expression
cluster as fast as the distance to the last car in the clust€g) is the main original part of the model under consider-
decreases down to the cluster headwgy;, enabling us to  ation.

write the following ansatz for the attachment rate to the clus- When the cluster is sufficiently large>1, it is reason-

ter of sizen=1: able to regard the characteristic timgn) ~ 7, as a constant
[i.e., ¢(n)—0 for n>1] as was done in papef45,1€ for
I e N) 1= H herysd all the values oh.

W, (n)=w(n):= ©)

Niree(N) — Nepust For small clusters the(n) dependence, however, requires
special attention. The matter is that the car attachment rate

Applying to a simple geometrical consideration and assumw (n) is considered to be directly determined by the local

ing N>1 as well aN—n>1 we get the relationshifillus-  characteristics of the “free” flow phase and the car cluster.

trated also in Fig. B Thus the dependence of the attachment vat€n) on the
( ) cluster sizen arises via the headway distanicg.{n) in the

Plim— P “free” flow being a function of n, ie.,, w,(n

Nred(N) = Neiysit (cart Nerusy) - (7) 9 +(n)

p(l—n)’ =w_[hqedn), houstd. Therefore the attachment rate is actu-
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ally an explicit functionw . (p, %) of the mean car density initial condition (4) admits the stationary solutiofe,{n)
and the cluster relative volumg only and, so, exhibits mi- meeting the zero “probability” flux in the cluster size space,
nor variations on scaledn<N. As will be seen below, ex-
actly this feature is essential rather than the particular form Wi (N=1)Pen—1)=W_(N)Pen)=0.
of w,(p,7n) given here. To describe traffic breakdown at
least one of the kinetic coefficients, (n) andw_(n) has to
be a direct function of the cluster sizefor its relatively Ped ) w,(n—1)
small values corresponding to the formation of the critical ° ="
nucleus. We associate this dependence with the escaping rate Pedn—1) w-(n)
w_(n) that, in contrast to the attachment rate (n), exhib-
its substantial variations in the regiornsny~ 20.

The parameten, actually divides the car clusters into the PedN)cexp{—Q(n)},
large cluster groupn>ng, for which the escaping rate is
constant,(n)—0, and the group of small clustens<=n,,  Where the functior(}(n) (called below the car growth po-
whose dissolution is affected substantially by the siz€his  tentia) is specified fom=2 by the formula
assumption is based on the fact that there should be a variety n—1
of possible manoeuvres for a driver to escape from a suffi- _ oV, 1
ciently small cluster on a multilane highway when the lanes Qm= zl Inf 7w (n")]
are not too crowded.

Expression9) takes into account this effect via the func- i (7= 70) ,
tion ¢(n) running from 1 to 0 as the cluster siméncreases, + 2 In 1+ T—¢(” )| (12)

. n'=2 0

S0, ¢(1)=1 and ¢(n)—0 asn—x. In particular, for a
small neighborhood of the precluster sire; 1, the valuer,  Both terms in Eq.(12) vary weakly as the argumert
of 7(n) gives us actually the lifetime of the preclusters and ischanges by one, enabling us to convert s(ir) into an
assumed to be less than the escaping time from a large cluistegral with respect to the cluster siretreated as a con-
ter, i.e.,7o<7.. Naturally, for the case of no cluster on the tinuous variable,
road we have to setv_(0)=0. The main results will be
obtained below actually applying to the general properties of Q(n)=Q(n)+Q(N), (13
the dependence _(n), however, for the sake of simplicity,

It is evident that

holds, which enables us to write the expression

we will adopt the following ansatz fan=1: where
n

Q. (n)=- f dn’In{ 7w hgedn’) 1}, (14)

A (1) 1= B[ X]|xminy =2 (10 0 o

(1+x)4

. . n (Too_ TO)

where the exponemf>1 is regarded as a given constant. We Qo(n)= fo dn’ln| 1+ T—¢(n’) . (15
0

point out once more that the dependence of the characteristic
time 7(n) on the cluster size is crucial because it is respon-

sible for the existence of the metastable “free” flow phase. The former term in Eq(12) or Eq. (13), i.e., the compo-

nent()..(n) called below the growth potential mainly char-

The system of equationid)—(3) subject to the initial con- - :
. ) . . acterizes whether a stable car cluster can arise on the road
dition (4) with the relationship<6), (8), and(9) forms the under the given conditions and specifies its size because it

Fhrg pr(:]soedilp\:\?;’?ﬁ”'i‘#;lmzogf:};oggg?ai?;r?s%%?gga?g'sVg/f'tmgexhibits substantial variations on large scales exceeding sub-
y ntially the sizeny. By contrast the latter one, the compo-

5
'@fge cIu;ter emeﬂrgence and the shape_ OT, the funqamemﬁfntﬂo(n), describes the formation of the critical cluster
diagram, i.e., the “flow volume—car density” relation in the

vicinity of traffic breakdown. In particular, in the adopted nucleus and, so, the breakdown phenomenon. Indeed, as fol-
terms the flow volumg(n) for the given traffic flow state, lows from Eqs(10) and(15) the potentiaklo(n) is constant

i.e., when a cluster of size arises on the road, is written as for n>n, and, thus, cannot affect the growth of a large clus-
['15" 16 ' ter already formed on the road. Besides, within the con-

tinuum approximation we have ignored the details of the
CN— (1 cluster distribution in the region including both the points
1) =(L=2)p 3 Nsed )]+ 70 Netusi- (D n=0 andn=1 and expand the cluster spane=1 to the
whole axisn=0.

Let us, first, analyze the condition of the cluster emer-
gence dealing with the potenti&l.(n) only. Applying to
Fig. 5 we can see that a large cluster can arise on the road, in
principle, if there exists a value of the headway distahgce

To clarify the characteristic features of the cluster forma-meeting the equality
tion let us analyze, first, the stationary cluster size distribu- o
tion Pen). The system of equationtd)—(3) subject to the Wi he]=1, (16)

We will get the fundamental diagram=j(p) by averaging
expression(11) with respect to the distributio®(n,t).

B. Equilibrium distribution
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FIG. 6. The fundamental diagram in the vicinity of the break-
FIG. 5. The attachment ratg?'[h] vs the headway distande  down region.

and the stability regions of the “free” flow phase.
which will be assumed to hold beforehand. In particular, Mired Notust) = e (1
within approximation (6) together with Eq.(5) for Dy
>hgstandp =2 this assumption holds if..v yac>2Dp and
the critical headway reads

and the Q..(n) has a minimum at the internal point
=ngust- IN the present paper we will ignore the existence of
another region where the equalityw%[h]<1 also holds

1 for very dense traffic flow, which has been considered in

h( =2 (70 maxt V(70 mad®— 4Dgp). papers 15,18
Relationship(7) enables us to rewrite the instability con-
ditions in terms of the mean car densjty The critical value

whereas fop— and 7.0 mac>Dopt We have p. of the car density is the solution of the equatiofpd0)
=h., whence we immediately get

hg”) = Tool max-
. . Lo _ lcar+ hcIust

The “free” flow phase will be stable if the initial headway PA=Pim | _Th. - (18)
distanceh.40)>h. and unstable otherwise. car e

Let us justify these statements. The growth potential .-
Q(n) is actually the sum of fw_(n)w, (n)] over n [see _Then the stable statel of the “free floyy corresponds to the
formula (12)]. So, in the region where the integrand of Eq. Nequality p<pc, and it loses the stability whep=>pc;. In
(14) meets the inequalityr.wS[h]<1 and the potential the latter tchase a dlargoelz _tclustle;_ of S'@USKP_):”C'US(”)N
Q. (n) is an increasing function af, the cluster dissolution arises on the road and Its refative volume IS
is more intensive than the car attachment. Under these con-
ditions the cluster size on the average decreases in time. The _ hetlear p=par (19
same concerns the time dependence of the headway distance Nelus{ P) = he—Naust P

hiedn) in the “free” flow phase because the value of | the given analysis we have ignored the dependence of
hiedn) decreases as the cluster becomes sméfigr. 3,  the cluster dissolution rate_(n) on the sizen and, thereby,
which is also illustrated by arrows in Fig. 5. Since the considered picture describes actually the “free” flow
7,WSTh]<1 forh>h. any randomly arising cluster tends to cluster transition of the second order. It does not allow for
disappear and, consequently, the “free” flow phase is stabl¢ghe metastable state of the “free” flow phase and corre-
when hged0)>h. In this case the potentidl..(n) pos-  sponds to the continuous transition from the traffic state
sesses one minimum located at the boundary poin® (or  without cluster on the road to the formation of a certain
n=1 what is the same in the continuum description cluster whose relative volume changes continuously from
Otherwise, hy{0)<h¢, there is a regionm;{0)<h  zero as the car density penetrates deeper in the instability
<h, where 7,w$Th]>1 and the car attachment rate ex- region[see formula(19)]. Consequently, this approximation
ceeds that of the cluster dissolution and a cluster occurring isannot explain the traffic breakdown and on the phase dia-
the corresponding “free” flow state tends to grow, inducing gram matches solely the stable branché&sand “ ¢” of the
the further increase in the headway distahgg(n). In this  “free” flow and the traffic with a developed cluster, respec-
case the “free” flow phase is unstable and the cluster willtively (Fig. 6). Nevertheless, exactly the given approxima-
continue to grow until the value df;.{N) reaches the criti- tion describes the stable branches of the fundamental dia-
cal pointh., where the car attachment and the cluster dissogram and, moreover, the metastable branch is a continuation
lution balance each other. Whence it follows, in particular,of the branch f” into the instability region. Keeping in
that the developed cluster is of the simag,,; obeying the mind the latter, we present also the expression specifying
equation these branches,
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. pIhe+ (hetlea)(per—p)p] it p<pe cluster size, in n/n,
Jlp) Je1=G(p—pc1)/pe1 it p>pe1, 0_40'0 . 0;5 . 1;0 . 1;5 . 2;0 . 2;5 X 30
where the constants are o 0.2 | n/n,=08 exponentg=2 )_’_
Je1=perdlhel, g 0.0 / |
g 1
he+I
- et o) Pl o]~ i sl H '
(he—hes) Piim gb
0.4
It sho-uld_ be noted that this expre.s-sion has been obtained by g 0 growth rate unit (%~ %)
substituting the maximum probability value,; of the clus- 5 0.6 w0
ter size into expressio(ll) instead of averaging it over the 08 . (5T
distribution Pe(n). The latter is justified because the effect 03 . potential unit T
of the cluster size fluctuations is ignorable dueN 1.
Now we analyze the possible metastable states of the o 0271Qc = .
“free” flow phase. In order to do this we should take into <} T
account both the components of the growth potertiiéh). = 017 T
Since the functiom)y(n) exhibits remarkable variations in E ] : ]
the regionn=n, only and, thus, the size, of the critical g 007
nucleus also belongs to this region, we may confine our con- g 0.1- 5 J
sideration to clusters whose siaés much less than the final g o ] (%~ 7) !
cluster sizeny, i attained after the instability development. In 021 in general Q ~ T”o 4
addition, for simplicity we will regard the value 7{ .
—79)/ 7. @as a small parameter, which enables us to examine 03 —— T
solely a small neighborhood of the instability boundary, 0 00 05 10 15 20 25 30
<p—pe1<pPei- cluster size, inn/n,

In this case the value of,.w3hgedn)] is practically

constant and can be approximated by the expression FIG. 7. The form of the cluster growth potenti@l(n) in the

breakdown regiorfupper window, the value of—dQ(n)/dn pro-
portional to the mean rate of cluster growth vs the clustersiard

IN{ 7..Wo hged N) 1} =0 P p°1' (20) (lower window the growth potentiaf)(n) itself. The present figure
Pc1 has been obtained using anséilt@) with the exponentj=2 and the
- chosen value of the vehicle densjiygives the ratio of the critical
where the coefficient nucleus sizen, to the characteristic value, equal ton./ny,=0.8.
_ Ueathe) |d |”W3V[h]‘ lution is the dominant process and the cluster of sizends
h. dinh \h=h to shrink. Otherwise, whedQ(n)/dn<0, it will grow.
Cc

The former term attains its maximumm& 0, so, accord-

is about unity,g~1, in the general case. In particular, we INg to Eq.(21) the derivatived()(n)/dn is negative for all
have the rigorous equality=1 for stepwise dependence of the possible values of the cluster size under consideration 0
9(h) [if we setp=c in expression(5)] and D g, car, <N<nNgus When

heust- Expression(20) together with formulg10) allows us
to represent the dependence of the growth potefi{al) on
the cluster sizen as

(Too_ TO)
g7o

P> Pe2i=pet +1]. (22

dQ(n) (7.— 7o) (p—pe1) In this case the “free” flow phase becomes absolutely un-

T — ¢(n)—g——— stable. Under the opposite conditign,, <p<p., there is a

0 Pe1 certain valuen, at which the derivativalQ(n)/dn changes

(T—70)[ No \%  (p—per) the sign(Fig. 7). Setting the left-hand side of E¢R1) equal

= \ngtn 9 oo (21)  to zero we get the relationship
The first term on the right-hand side of E&1) is due to the _ PP 23
: : : ; é(ne) — (23)
increase in the cluster dissolution rate foe ng, whereas the Pc27 Pc1

latter one is proportional to the cluster growth rate in the ] ) )

region of large values af. The resulting value of the deriva- Which together with ansatd0) gives the estimate

tive dQ(n)/dn characterizes the direction of the cluster evo- B 1/

lution. If it is positive, dQ(n)/dn>0, i.e., the potential ne=n (%) 1
cl

Q(n) is an increasing function afi, then the cluster disso-

0
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well justified except for small neighborhoods of the bound-the assumed quasi-equilibrium between the “free” flow
ary pointsp.; andp,. If n<n. the derivative is positive and phase and the preclusters. And, finally, the initial condition
the cluster should decrease in size, i.e., the “free” flow phasd4) can be rewritten as
is stable with respect to the emergence of such small clusters.
However, if a certain cluster of siza>n; has already
formed, for example, due to random fluctuations, then it will
grow and a large cluster of size, arises on the road
becausal()(n)/dn<0 in the regionn>n;. When the car density belongs to the interval

In other words, we have shown that the dependence of the (p.;,pe2) and the “free” flow phase is metastable the
dissolution ratewv_(n) on the cluster sizea<n, makes the form of the growth potential2(n) in the regionn=n, is
“free” flow phase metastable when the car density belongshown in Fig. 7. The “free” flow phase being in quasiequi-
to the intervalp e (pc1,pc2) (branch “m” in Fig. 6). The  librium with preclusters matches the local minimum rat
formation of a large clusten>n,, proceeds via generation =0 separated from the region of the stable cluster growth
of the critical nucleus whose sizg is estimated by expres- n>n. by the potential barrief).. The value of this potential
sion (24). In order to find the generation rate of the critical barrier is estimated as
nuclei and, thus, the breakdown frequency we should con-

fwan(n,t)= 1.
0

sider the transient processes in the cluster growth, which is Q.= (72— 7o) Ne 5
the subject of the following section. Ty o%n ) @7
C. Continuum approximation: The breakdown probability where the functionw is defined as
In order to apply well developed techniques of the escap- ne g de[x]
ing theory(see, e.g., Ref.19]) to the analysis of the traffic o[ Xc] :=f dxx| — W) (28
0

breakdown probability we approximate the discrete master
equation(1) by the corresponding Fokker-Planck equation. It _ )
is feasible because in the case under consideration the kinetic N Particular, for ansatz10) with exponeniq=2 expres-
coefficientsw., (n), w_(n), first, vary smoothly on scales SoN(27) becomes

about unity and, second, are approximately equal to each 5
other, |w, (n)—w_(n)|<w_(n). The latter conditions en- (12— 79) X

) . Q.= Ng ) (29
able us to treat the argumemtas a continuous variable and 70 (1+x,)?

to expand the functionsv,(n=1), w_(n*x1), and P(n
+1t) into the Taylors series. In this way and, in addition, Moreover, in the limitx.<1 we have
taking into account expressidf) we reduce Eq(1) to the

following Fokker-Planck equation: 1, _ do[x]
[Xc]= 515, with the constantr = — —— ,

T 0;P(N,t) =3d,[ d,P(n,t) +P(n,t)d,2(n)], (25 x=0

where the potential}(n) is given by formula(13) in the @S foIIows.from expressio(QS), and the general formula for
general form. However, in the case under consideration thEe potentialll; can be written as

ratiosn/N, (p—p¢1)/pec1, @and (r,— 79)/ 7o are regarded to

be sufficiently small and it is possible to expand the potential Q.= (7~ 7o) rnoxi. (30)

Q(n) in the three parameters and to remain the leading terms 279
only. In this way we get

In the same limit expressiof23) gives us

(70— 70) n/ng n
Qm ="y | " dxalxI— dxcl pap) -
¢ r(pc2_pcl).
n
X\ 1= 5——5 1 (26)  The main much deeper minimum of the potenti®(n) is
Neiust P)

located atn = ngy No.
wherex.=n./n, and we have se€(0)=0. Equation(2) We ha\{e dempnstrated that' a precluster m.ust climb over
transforms into the boundary condition at infinitely distantth€ potential barrief) at the poinin. to convert into a large
points, which is imposed on the probability flux stablg cluster. It is |mplemented throggh random fluctuations
carrying the cluster size up to the critical valog. In these
J(n):=—d,P(n,t)—P(n,t)d,(n) terms the traffic breakdown is the classical problem of escap-
ing from a potential well described by the Fokker-Planck
and requires it to be equal to zerd(~)=0. Equation(3) equation(25). The latter analogy enables us to write down
describing the precluster generation is reduced, in turn, to ththe estimate for the frequenay,y of the traffic breakdown
zero boundary condition imposed on the probability fluxprocesses depending on the given vehicle density in the
J(n) formally atn=0, i.e.,J(0)=0. The latter is justified by “free” flow state. Namely, as shown in Appendix
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1 (Toc—To

Pod™ \N2mNg T,
X exp{ - (TxT;TO)now[xc]] , (32
0

3/2
) (1= BIxcD[ o' [xc[*?

70

which is well justified for the car density belonging to the
interval p.1<p<p., except for certain sufficiently small
neighborhoods on the critical poinfs.;, p¢. Ansatz(10)
with the exponenty=2 together with formula23) enables
us to rewrite expressio(82) as

breakdown probability, T, v,

—————
0.4 05 06 0.7

1 o — o) 32 . =
Vo™= —( - 0) (1— A)ASM 0.1 0.2 0.3
NN T 0 overcriticality measure, (- g)/(g,- 4)
_ A2
X exp — (7~ 7o) No (1-4) ) (33 FIG. 8. The traffic breakdown probability vs the depth (
o (1+A1?)?2 —pe)! (pea—pe1) Of penetration into the metastability region. In

calculating ansatz10) with the exponenty=2 has been used.

Here we have introduced the quantity
7.,~2 S and estimating the preceding cofactor as

A P~ Pc1 (34) 1/(y2mny7,) we find the characteristic rate of the traffic
T per—Per breakdown to about 1/50 mit in the general case. So the
real traffic breakdown events seem to be observed in cases
treated as a dimensionless overcriticality measure showinghere the vehicle density comes to the upper boundgyy
how deep the system penetrates into the metastability regioithe latter allows us to confine our analysis formally to the
A=0 corresponds to the valug,; of the vehicle density limit case

where a jam can emerge in principle até=1 matches the _ < _
vehicle densityp., after exceeding which no traffic state Xe <1 (pez=p)<(Pe2™ Per)- (36)
except for jams can exist at dfig. 6). Then estimating the probabilitf,, of detecting a traffic

breakdown during the observation time interVg|,s as Fyq

D. Frequency of traffic breakdown during a fixed =TopsVbg We obtain from Eq(32) the expression

time interval T,
__9 1/2
Experimentally, traffic breakdown is typically analyzed Fpd(A)= T_de?Qc exp{—Qc}, (37)
detecting a significant drop in the vehicle speed during a
certain fixed time intervall ., about several minutes and Where
then drawing the relative frequency of these events vs the (10— 7o)
traffic volume[9—-12. In order to compare this representa- chm—ono(l—A)z (39)
tion with the obtained results let us consider them in more 2rro
detail. _ o and we have introduced the time scale
As follows from expression(22) the density interval
(pc1,pc2) inside which the traffic jam emerges by the nucle- 2\/;70
ation mechanism is of the thickness Tod™ (7 =7 No7e s (39)
(7= To) giving us the characteristic time of the breakdown emer-

gence. In deriving Eq(37) we have also taken into account

formulas(10), (30), and(31) and number 2 remained directly

According to the experimental daf@—13 the thickness of as cofactor because the maximum of the functidfiexp

the traffic volume interval inside which the traffic breakdown (—2) is about 0.43. Naturally, we have to confine ourselves to

demonstrates the probabilistic behavior is about its lowsuch values of the vehicle density for whidhs=<1 holds

boundary in magnitude. So we have to regard the ratio ( because traffic flow with higher values of the vehicle density

—79)/ 7o @lso as a value about unity, cannot exist on these time scales. For the following values
r=2, the ratio ¢..— 79)/79~1, 7.~2 s, andny~20 ex-

1 (35 pression(39) gives us the estimate,;~1 min of the char-

' acteristic breakdown time. It should be pointed out that the

latter estimate does not contradict the evaluation of the

Thereby, settingny=20 we conclude that in the general casebreakdown rate given at the beginning of the present section

wheren.~n, the potential barrier i§),~5 correspondingto because it holds only in the regidh >1.

the exponential factor expQ.J~0.7x10 2. Then setting Figure 8 illustrates the obtained results depicting the

(Pc2—Pc1) =Pc1 970

(72— 7o)
d7o

066125-9



KUHNE, MAHNKE, LUBASHEVSKY, AND KAUPUZS PHYSICAL REVIEW E65 066125

breakdown probability for different values of the observationnoring the velocityd(hg,s) of cars in the cluster as well as
time To,smeasured in units of,q vs the depth of penetrating the headway distanck,, in ansatz(6) we find that the
into the metastability region. It should be pointed out that injower boundaryp.; of the metastability region meets the
drawing Fig. 8 we have applied formul@3) rather than Eq. traffic volume
(37) in order to have a possibility to go out of the frame-
works of the formal limit(36). The latter is considered here ) o 1
to clarify the obtained results only. To make the form of the JCl=pclﬁ(hc)%W+[hc]=7—~1800 veh/h/l.
Fod(A) dependence more evident we apply again the formal -
limit case(36) assuming the ration:=T,s/ 7pq to be a large  We find immediately the estimate.,~2 s, which is in
parameter. Then analyzing a small neighborhood of the poirdgreement with the value adopted previously in papers
pr. specified by the equality [15,14. Like in the preceding section, here we use the esti-
mates of the quantities,~ 20 according to the experimental
(40) data depicted in Fig. 1, taking{ — 7o)/ 79~ 1 from the gen-
eral consideration.
In order to compare the obtained results and the available
we get experimental data we have applied the latest materials pre-
. sented in detail by Lorenz and Elefteriaddi2]. The break-
P~ Pm down phenomenon was investigated in traffic flow near two
Fodp) =exp( o ) ’ bottlenecks of Highway 401, one of Toronto’s primary traffic
" arteries. The detectors were located right after the on ramps
where the vehicle density scale is within several hundred meters downstream. So the dynamics
of traffic breakdown observed at these places seems to be
mainly due to local internal properties of traffic flow dis-
cussed in the present paper. The complex spatial structure of
the induced congested phase including moving wide and nar-
Therefore, in a rough approximation tt/y(p) dependence row jams reported by Kerndfd 3] should emerge above the

mately a constant valugpecause the function Imj shows for one of these bottlenecksite “A” in paper [12]). The

weak variations foms1]. Changing the observation dura- Paired detectors were located in each of the three lanes and
tion Typs practically shifts the cutoff poinp*, only. were instrumented to provide vehicle count and speed esti-

mates continuously at 20 s intervals. A breakdown event was
fixed via the velocity drop below 90 km/h, the middle point
of a certain gap in the velocity field visually separating the
We recall once more that we compare the model develcongested and free traffic flow states. Besides, only those
oped for traffic flow on a homogeneous road with the experidisturbances that caused the average speed over all the lanes
mental data obtained near highway bottlene@es also In- to drop below 90 km/h for a period of 5 min or more were
troduction. So this comparison is justified if the model can considered a true breakdown. The latter enabled the authors
explain the characteristic features of the observed phenonto filter out large amplitude fluctuations in the mean vehicle
enon based on the general properties of traffic flow, which ig’elocity not leading to the traffic breakdown. Figure 9 exhib-
the main goal of the present section. its the obtained probabilityrelative frequencyof the traffic
Experimental investigations of the traffic breakdown re-breakdown events during 5 min and 15 min intervals vs the
garded as a probabilistic phenomenon have been carried otigiffic volume partitioned within 100 veh/h/l steps. We note
by several authorésee, e.g., Ref§9-12,19). Elefteriadou that Fig. 9 does not show the available 1 min interval data
et al.[9] actually pointed out the fact that traffic breakdown because the corresponding breakdown probability is not sig-
at ramp merge junctions occurs randomly without precisenificant for all the observed values of traffic volume except
relation to a certain fixed value of traffic volume. A more for the upper boundary 2800 veh/h/l, certainly due to its rare
detailed analysis of the breakdown probability has beer®ccurrence.
made in paper$10—12,18. These observations show that  The continuous curves in Fig. 9 present our attempts to fit
traffic breakdown can occur inside a wide interval of traffic the obtained theoretical dependence in the given experimen-
volume from about 1500 veh/nfiehicles per hour per lape tal data. Namely, these curves describe the breakdown prob-
up to 3000 veh/h/l. The real dynamics of traffic breakdownability estimated as,q=Tpsvng, Where the latter cofactor is
near bottlenecks and the developed structure of the corgiven by the expressio(83) within the replacement «(j
gested traffic flow are sufficiently complex as was exhibited—j¢1)/(jc2— jc1) [See expressiof84)] and we have used the
by Kerner[13]. In particular, Kerner demonstrated that the following values of the critical traffic volumesj.,
synchronized mode of traffic flow in the vicinity of highway =1200 veh/h/l andj.,=3400 veh/h/l, the characteristic
bottleneck is locally metastable under the discharged dowrbreakdown timer,g=2.5 min[see expressio89)], and set
stream traffic flow of volumg varying in the same interval. the producing(r..— 79)/ 79=25. Keeping in mind the afore-
The latter enables us to estimate the detachment time said, all the adopted values are quite reasonable, including
playing significant role in the presented model. In fact, ig-the estimatg.,=3400 veh/h/I that seems extremely high at

2r In(2m) 7o |2

A 7
1= 4m (7= To)Ng

(41)

r o 1/2

2 In(2m) (7., — 79)Ng

pm=(Ppc2—pc1) (42)

IIl. COMPARISON WITH EXPERIMENTAL RESULTS
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10——F—+—T7+—T7 77— 7 dom fluctuations. The synchronized mode is characterized by
0.9 [ strong multilane correlations in the car motion and, as a re-
2 08 I / sult, all the vehicles in a certain effective cluster spanning
E 7] ® S-minute interval / / over all the highway lanes move as a whole. Thus the pro-
_‘é’ 0.8 A 15-minute interval [ A / posed probabilistic description deals with actually macrove-
g hicles comprising many individual cars. The available single-
g 0.5 vehicle experimental datd8] present the correlation
L 04 characteristics of the synchronized mode, which have en-
§ 0.3 abled us to estimate the characteristic dimensiofn
S 02 ~20-30 of the car cluster entering the dependence of the car
01 detachment rate on the cluster size. Namely, for small car
00r— ma g cIusters,nsQO, the characteristic_detachment timgshould
1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 be substantially less than this time for large clustersn

>ng.

We have written the appropriate master equation for the
cluster distribution function and have analyzed the formation
of the critical car cluster due to the climb over a certain
potential barrier. The inequality,>1 has opened for us the
\pay to convert the discrete master equation to the appropri-
ate Fokker-Planck equation and find all the required charac-
teristics of the traffic breakdown.

The obtained results are compared with the available ex-
perimental data and, in detail, with the probability of traffic
breakdown in the vicinity of bottlenecks vs the traffic vol-

me presented by Lorenz and Elefteriaddg]. It turned out
hat the theoretical curves can be fitted closely to the given
experimental data using values of the main parameters cho-
sen based on the general properties of the traffic flow not
related directly to the breakdown dynamics. In particular,
IV. SUMMARY AND CONCLUSION first, we have demonstrated that the characteristic internal

We have considered the traffic breakdown phenomenoHme scaleryq of the breakdown.development |s.a_boq?g
~ny7,. (we recall thatr,~2 s is the characteristic time

regarded as a random process developing via the nucleatiop hich individually | lusta
mechanism. The origin of critical jam nuclei proceeds in a uring which a car can individually leave a c ustedence .
e get the estimate of the breakdown time scale about 1 min.

metastable phase of traffic flow and seems to be located i "he latter iustifies the widel d probabilistic techni f
side a not too large region on a highway, for example, in the € latter justiies the widely used probabilistic technique o

close proximity of a highway bottlened,6]. The induced the breakdown investigation based on fixing this event dur-
complex structure of the congested traffic phase is locatef!d @ time |n'terval of severallmmutes. Second, the proppsgd
upstream of the bottlenedk 3]. Keeping these properties in model explam_s why the ”a!ﬁ"? bfea“dOWU as a p_robgblhstlc
mind, we have applied the probabilistic model regarding thé)henomenlon is observed inside a §uff|0|ently w!de interval
jam emergence as the development of a large car cluster é?{ the tr:_;xfﬂ_c volume, nam(_aly, _the th|ckne33 of this Iayer_
highway. In these terms the traffic breakdown proceed$3" attain its low boundary, in magnitude. The matter is
through the formation of a certain car cluster of critical sizet@tA1/jc1~ (7=~ 7o)/ 7o~ 1. . . .
in the metastable vehicle flow, which enabled us to confine Both OT t'hese results have been obtained practically with-
ourselves to the single cluster model. out any fitting parameters applying only to the general as-
We assumed that, first, the growth of the car cluster iSUmptions on the traffic flow theory. Namely, we assumed
governed by attachment of cars to the cluster whose rate fe traffic brgakdown to devel_op inside th_e .synchrom.zed
mainly determined by the mean headway distance betweeWOde qf traffic flow and_ used its characteristic correlation
the cars in the vehicle flow and, may be, also by the headwa! ropernes. Thereby a h|ghw'ay bottlenecl'<. seems to afft_act
distance in the cluster. Second, the cluster dissolution is de- a_lnly_the particular properties of the_cr|t|cal jam nuclei,
termined by the car escape from the cluster whose rate d -_h'Ch increases the probablllty_of the jam emergence near
pends on the cluster size directly. To justify the latter as- ighway bottlenecks. The physics of the traffic breakdown
sumption we apply the modern notion of the traffic flow must be the same for homogeneous and heterogeneous roads.

structure(see Refs[1—3]). Namely, the jam emergence goes Concluding the aforesaid, we state that traffic breakdown
mainly through the sequence of two phase transitions: frel & MESOSCOPIC process, as it must be for the synchronized
flow — synchronized mode- stop-and-go patteriv]. Both mode, whose characteristic spatial and temporal scale_s cor-
of these transitions are of the first order, i.e., they exhibitreSpond to car clusters made of a large number of vehicles.
breakdown, hysteresis, and nucleation eff¢6is Therefore
considering the final stage of the jam emergence we have to
regard the synchronized mode as the metastable phase ex-The authors would like to thank Peter Wagi@erlin) for
actly inside which a critical jam nucleus appears due to ranuseful comments and criticism. This work was also sup-

traffic volume (veh/h/1)

FIG. 9. The traffic breakdown probability during 5 min and 15
min intervals vs the traffic voluméafter Lorenz and Elefteriadou
[12]). The continuous curves present the dependdB8E fitting
these experimental data in the frameworks of the replaceme
A=(j—j)/(ica—ic1) [see expressiofB34)] under the following
values of the critical traffic volume$,,=1200 veh/h/I andj,
=3400 veh/h/l, the characteristic breakdown timg=2.5 min,
and the produchg(7..— 7g)/ 7= 25.

first glance. Indeed, this value is no more than a result o
approximating thg (p) dependence by a linear function for-
mally into the region of high vehicle densities.
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potential well borhood of the local minimum=0 whose thickness is

N T specified by the inequalitf2 (n) < 1. Thereby the subsequent
'§ g Q-Q'=1 attempts of escaping may be considered as being mutually
8 \ independent. After the particle has climbed over the barrier
= 5 Q(n) the force—d(Q(n)/dn carries it away to distant points, mak-
3 Uappiné/point\ ing the return impossible. So from this point of view we may
g v, refer to the particle being inside the potential well or having
_é- zero probabizi@ zero probability escaped from it as two of its possible states without specify-
o~ fux f""”,’f"" ing the particular position. Therefore the probabiliB(t

0 1’ ; n* - —t’) that the particle remains inside the well at timéf it

(o

has been placed there at tirtle obeys the equation

FIG. 10. Escaping problem simulating the critical nucleus for-

mation P(t)=P(t—t")P(t") for 0<t’'<t.

) , , . We get the general expression for the functigt),
ported in part by the Russian Foundation of Basic Research,

Grant No. 01-01-00439, and the Russian High School Scien- t
tific Program, Grant No. 05.03.01.30. P(t)=exg — E—t
Ire
APPENDIX: ESCAPING RATE FROM A BOUNDARY where 7 iS a certain constant specified by the particular
WELL properties of a potential well. The latter formula gives us

immediately the general form of the escape probabilit
In Sec. Il C we have obtained the Fokker-Planck equation y g pep y

(25 governing the evolution of car clusters treated as ran- dp(t) 1 t

dom wandering in the space of their sizelt has turned out FO==— = —_exp( -—. (A2)
that near the threshold the precluster domain is separated Tlite Tlite

from the large cluster region by a potential barfiey, there- In order to find the lifetimer;,, we will deal with the

fore the formation of the clustered phase should proceeflgpiace transforns (s) of the escape probabilitf(t),
through the nucleation mechanigiffig. 7). In other words,

for a large cluster to emerge on the road its critical nucleus o
n. has to arise via random fluctuations of the cluster size in Fi(s)= Jo dtexp(—st) F(t) =
the precluster region. Thereby in order to describe the cluster
formation we need an expression specifying the rate of thghence it follows that in the expansion &t (s) with respect
critical r_1uc|eus generation, being the subject of the present, s around the poins=0,
appendix.
Mathematically the description of the critical nucleus gen- FL(s)=1—sSTjet -, (A4)
eration is equivalent to the problem of a particle escaping
form the corresponding potential barrigfig. 10. Thereby the first order term directly contains the desired lifetime as
the rate of the critical nucleus generation, i.e., the frequencyhe coefficient.
of the traffic breakdowrv, is represented in terms of the  Following the standard approa¢h9] we reduce the es-
probability densityF(t) for this particle to escape from the caping problem to finding the first passage time probability.
potential well at a given timeprovided initially,t=0, it has  In other words, we assume the particle never comes back to
been placed near the local minimuimeren=0). Namely, the potential well if, after climbing the barrier, it reaches
points whereQ).—Q(n)=1 (Fig. 10. The particle may be
vpg=F(+0), (A1) withdrawn from the consideration or, what is the same, it
will be trapped when it reaches for the first time any fixed
where the valuet 0 of the argument means that we con- point n* in this region. The time it takes for the particle to
sider time scales exceeding substantially the duration of alieach the poinh* after overcoming the barrier at the critical
the transient processes during which the distribution of thgpoint n is ignorable in comparison with the characteristic
particle inside the potential well attains locally quasiequilib-waiting time for critical fluctuations. Thereby the function
rium. F(t) specifies actually the probability of passitrgaching
Since the potential relief under consideration is rather spethe pointn* for the first time at the time momert This
cial we prefer to recall briefly the way of deriving the prob- construction enables us to introduce a more detailed relative
ability F(t) referring a reader to the specific literatuisee, function F(n,t) giving the probability for the particle ini-
e.g., Ref[19)]) for details. tially placed at the point &n<n* to reach first the right
The concept of potential well implies that the barrier is boundaryn* of the region under consideration at the time
sufficiently high, Q.>1, therefore the particle can climb momentt. The left boundaryn=0 is impermeable for the
over it due to rare fluctuations lifting the particle to points atparticle. Then using the standard technique based on the
the potential barrier wher@(n)>1. If such an event does backward Fokker-Planck equation conjugated with &)
not lead to escape, the particle will drift back to the neigh-we obtain the governing equation for the functidn(n,s),

1+ STiife ’ (As)
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T.SFL =0 FL— [0 Q) ][00 FL] (A5)
subject to the boundary conditions
FL(0s5)=F. (n*,s)=1. (AB)

It directly follows that the first order ternp(n) in the ex-
pansion of the Laplace transforf (n,s) with respect tcs,

F(n,s)=1-s¢(n),

obeys in turn the equation

Fae(N) = [ (M) ][ dne(n)]=— 7., (A7)
subject to the boundary conditions
dae(0)=0 and ¢(n*)=0. (A8)

The solution of the systerfA7) and (A8) has the form
@(n)=rmjn dn’e“(“')Jn dn’e” ) (A9)
n 0

and the valuep(0) gives us the desired lifetime,
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Tiite = ¢(0). (A10)
Inside the potential well the functiop(n) takes practically a
constant value mainly contributed by the pointshelonging

to the well bottom, i.e., to the regio(n")<1 and by the
pointsn’ located near the top of the potential barrier where
Q(n)—Q(n')=<1. This feature leads us immediately to the
approximation

Tite~ 27 7.[|32Q(n) |14 9,0(0) ] 1e?(),
(A11)

which is the main result of the present appendix.
In particular, for the potentiaf) (n) specified by expres-
sion (21) or (26), formula (Al1l) gives

o ) 3/2

Te™ T0

Tiife ™~ 2’7Tn07'w(
X (1= p[xc]) M| [x]) %M. (A12)

Formulas(Al), (A2), (Al12), and (27) give us expression
(32).
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