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Probabilistic description of traffic breakdowns
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We analyze the characteristic features of traffic breakdown. To describe this phenomenon we apply the
probabilistic model regarding the jam emergence as the formation of a large car cluster on a highway. In these
terms, the breakdown occurs through the formation of a certain critical nucleus in the metastable vehicle flow,
which enables us to confine ourselves to one cluster model. We assume that, first, the growth of the car cluster
is governed by attachment of cars to the cluster whose rate is mainly determined by the mean headway distance
between the car in the vehicle flow and, maybe, also by the headway distance in the cluster. Second, the cluster
dissolution is determined by the car escape from the cluster whose rate depends on the cluster size directly. The
latter is justified using the available experimental data for the correlation properties of the synchronized mode.
We write the appropriate master equation converted then into the Fokker-Planck equation for the cluster
distribution function and analyze the formation of the critical car cluster due to the climb over a certain
potential barrier. The further cluster growth irreversibly causes jam formation. Numerical estimates of the
obtained characteristics and the experimental data of the traffic breakdown are compared. In particular, we
draw a conclusion that the characteristic intrinsic time scale of the breakdown phenomenon should be about 1
min and explain the case why the traffic volume interval inside which traffic breakdown is observed is
sufficiently wide.
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I. INTRODUCTION: TRAFFIC BREAKDOWN AS A
NUCLEATION PHENOMENON

The spontaneous formation of traffic jams on highwa
has attracted attention over the last years because of
reasons. The first is the importance of this problem for tra
engineering, especially concerning the feasibility of attain
the limit capacity of traffic networks and quantifying it. Th
second is the fact that the jam formation nicely exemplifi
the existence of various phase states and transitions bet
them in statistical systems comprising elements with m
vated behavior, which is a novel branch of physics. Acco
ing to the recent notion proposed by Kerner~see, e.g., Refs
@1–3#! based on the experimental data@4–7# the jam forma-
tion is of sufficiently complex nature. In particular, it pro
ceeds mainly through the sequence of two phase transiti
free flow (F)→ synchronized mode (S)→ stop-and-go pat-
tern ~J! @7#. Both of these transitions are of the first orde
i.e., they exhibit breakdown, hysteresis, and nucleation
fects @6#. The F→J transition can occur directly if only the
synchronized mode is suppressed by a road heteroge
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@3#. The recent analysis of single-vehicle data by Neub
et al. @8#, in particular, confirmed these features and a
discovered fundamental microscopic properties distingu
ing synchronized mode from other traffic states.

Theoretical description of the jam formation is far fro
being developed well because the synchronized mode
sesses extremely complex structure@5#. For example, it com-
prises a certain continuum of quasistable states, so, mat
a whole two-dimensional region on the phase plane ‘‘vehi
density–traffic volume’’ in contrast to the free flow stat
However, tackling the question of how to regulate traf
flow on highways, for example, by controlling the spe
limitation in order to prevent the jam formation we ma
rough out the problem. Indeed, for this purpose it is su
cient to analyze the conditions giving rise to jams rather th
the jam evolution itself. Such a standpoint is justified, in pa
by the aforementioned phase transitions being of the
order. The free flow state, presumably, should have the
sibility to exist at the given car density or inside its certa
neighborhood. This might be the necessary requirement
jam formation at a fixed vehicle density, or for appearance
both the jam phase and the synchronized mode at a fi
traffic volume. Second, the jam formation proceeds via
nucleation mechanism but not in a regular manner. The
fore, the key point in the emergence of a jam is the rand
occurrence of its critical nucleus inside the synchroniz
mode or free flow.
©2002 The American Physical Society25-1
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The jam formation manifests itself in the traffic brea
down, i.e., in a sharp drop of the traffic volume to a subst
tially lower value. Detecting these events one can get the
of the critical nucleus generation depending on the road c
ditions and the traffic state. In this way the main attention
shifted to the experimental and theoretical analysis of
probabilistic features of jam formation regarding the char
teristic mean values of the traffic volume as phenomenolo
cal parameters@9–12#. Such a probabilistic description of th
traffic breakdown is the main purpose of the present pap

At the first glance the problem seems hopeless until
model of the synchronized mode is developed. Neverthel
there are circumstances enabling us to make a step tow
this problem right now~see also Ref.@13#!. The matter is that
the F→S transition is of another nature than theS→J tran-
sition. The former is due to a sharp decrease in the over
ing frequency, giving rise to the synchronized mode, wher
the latter is caused by the pinch effect~see, e.g., Refs
@1–3#!. Thus fluctuations in the vehicle density and veloc
are not the main causes of theF→S transition, but other
characteristic parameters of traffic flow are relevant~cf. also
Ref. @14#!. By contrast, just these fluctuations give rise to t
jam in the synchronized traffic flow. As a result, the thresh
of the F→S transition turns out to be remarkably less th
that of the jam formation and can be attained at lower val
of the vehicle density. So, the generation rate of critical
clei for the former transition has to be great in comparis
with the latter one. Thus, on time scales characterizing
occurrence of critical jam nuclei the traffic state with resp
to the transitions between the free flow and synchroni
mode is quasistationary. Therefore the formation of a criti
jam nucleus is the leading nonequilibrium process limiti
the traffic breakdown. The latter feature allows us to confi
our consideration solely to the jam nucleus generation an
regard the synchronized mode and the free flow phase~if
they coexist in the case under consideration! as one traffic
state. Moreover, since a jam forms actually inside the s
chronized mode where the vehicle motion in different lan
is strongly correlated we may apply to a single-lane road
approximation that treats all the cars moving in differe
lanes on a multilane highway and being neighbors across
highway as a single effective macrovehicle consisting
many cars. The macrovehicle concept is partly justified
the empirically observed fact that fluctuations in the dow
stream flow leaving a freeway bottleneck can proceed w
out the traffic state change, even their amplitude attains 3
of the mean traffic volume@9–13#. In any case, fluctuation
in the traffic flow volume near its breakdown are of mac
scopic nature and the critical nucleus of traffic jam has
include many vehicles. This feature is also pointed to by
observed breakdown near an on-ramp occurring each
after a large vehicle cluster entered the freeway stream@9#.

It should be pointed out that the real structure of co
gested traffic near a highway bottleneck is sufficiently co
plex, it contains the region of synchronized mode located
the close proximity of the bottleneck, the preceding upstre
region of moving narrow jams transformed into wide jam
@13#. However, it is quite reasonable to consider this str
ture as being induced by the traffic breakdown proces
06612
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arising inside the ‘‘head’’ of this complex jam, in the regio
of synchronized mode adjacent the bottleneck. Therefore
main characteristics of the breakdown phenomenon may
related to intrinsic processes taking place inside the sync
nized mode on not too large spatial scales. The latter just
our attempt to describe traffic breakdown ignoring the co
plex spatial structure of the metastable traffic state ins
which critical jam nuclei originate.

Processes similar to the traffic breakdown are widely m
in physical systems. For example, water condensation in
persaturated vapor proceeds via formation of small at
clusters of a critical size. Keeping in mind this analogy b
tween the traffic breakdown and the phase transitions
physical systems, Mahnkeet al. @15,16# proposed a kinetic
approach based on the stochastic master equation descr
the jam formation in terms of the attachment of individu
cars to their cluster. However, the particular form of the d
veloped master equation does not allow for the jam form
tion being the first order phase transition and, thus, the tra
breakdown. In the present paper we generalize this kin
approach to describe the latter phenomenon.

However, before passing directly to the model we ma
two comments clarifying its original part and the feasibili
of comparing the results to be obtained within the model a
the available experimental data.

First, we recall the experimental data enabling us to e
mate the characteristic sizen0 of vehicle clusters that are
small enough so the behavior of drivers inside them seem
be special. From our point of view the multilane correlatio
in the vehicle motion are due to the drivers taking into a
count the behavior of all the cars, including also the cars
the neighboring lanes, which are inside the region access
to observation. Therefore the synchronized mode has to
hibit strong correlations in this region. Figure 1 shows t
speed autocorrelation function vs the number of cars
have passed a fixed detector that was experimentally fo
in the synchronized mode@8# ~see also Ref.@17#!. We see
that the car velocities are strongly correlated over sca
spanning some ten vehicles, i.e., a car cluster of this s
n0*20, makes up actually a certain fundamental unit of
synchronized mode. In the free flow no such long-distan
correlations have been observed.

Second, the model to be developed considers the br
down phenomenon for traffic flow on a homogeneous ro

FIG. 1. Illustration of the speed autocorrelation vs the numbe
cars that have passed a fixed detector. Based on the observatio
Neubertet al. @8#.
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PROBABILISTIC DESCRIPTION OF TRAFFIC BREAKDOWNS PHYSICAL REVIEW E65 066125
whereas the available experimental data were obtained
traffic flow near highway bottlenecks. Therefore it could
thought at first glance that their comparison is not justified
would be unjustified indeed if the traffic breakdown ne
highway bottlenecks and far from them, i.e., on homo
neous segments of highways, would proceed bydifferent
mechanisms. However, applying to similar phenomena
physical media we see that a new phase inside a metas
one arises through generation of the critical nuclei in hom
geneous as well as heterogeneous systems. The cr
nucleus size is determined by the competition between
increase in the surface free energy and the decrease in
bulk one when a nucleus of new phase appears. The
served quantitative difference in the rate of phase transi
in the same homogeneous and heterogeneous mediu
caused by the critical nucleus form affected by the sys
boundary. So, the general properties of these phase tr
tions are similar in both cases and can be analyzed using
same physical concepts. Roughly speaking, the heter
neous nucleation is singled out mainly by an individual fo
factor only.

The physics of traffic breakdown is currently far fro
being well understood. Therefore if it does proceed by
nucleation mechanism and the high probability of jam em
gence near a highway bottleneck is due to the effect
bottleneck on the particular properties of car clusters o
then a model for homogeneous~or quasihomogeneous! road
may be applied to its description. There is a natural way
verify this assumption. It is to compare the characteris
properties predicted by such a model and the observed d
If the model does predict something new or previously u
clear then its application to the traffic breakdown also n
highway bottleneck is justified, at least, to understand
basic features of the phenomenon. This question will be
cussed in detail in Sec. III.

II. PROBABILISTIC MODEL FOR THE CAR
AGGREGATION

A. Discrete description: Master equation

We consider traffic flow on a single-lane road and stu
the spontaneous formation of a jam regarded as a large
cluster arising on the road. Instead of dealing with a cert
road part of lengthL and imposing some boundary cond
tions at its entries and exits we examine a circular road
lengthL with N cars moving on it. All the cars are assum
to be identical vehicles of effective lengthl car and can make
up two phases. One of them is the set of ‘‘freely’’ movin
cars and the other is a single cluster. The cluster is spec
by its size n, the number of aggregated cars. Its intern
parameters, namely, the headway distancehclust ~i.e., the dis-
tance between the front bumper of a chosen car and the
bumper of the following one! and, consequently, the velocit
vclust of cars in the cluster are treated as fixed values in
pendent of the cluster sizen. We note that in the model unde
consideration there can be only one cluster on the road.
‘‘free’’ flow phase is specified also by the correspondi
headway distancehfree(n) that, however, depends on the c
cluster sizen. The larger the cluster is, the less is the num
06612
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(N2n) of the ‘‘freely’’ moving cars and therefore the longe
is the headway distancehfree(n).

When a cluster arises on the road its further growth is d
to the attachment of the ‘‘free’’ cars to its upstream bounda
whereas the cars located near its downstream boundary
celerate to leave it, which decreases the cluster size. T
processes are treated as random changes of the clustern
by 61 ~Fig. 2! and the cluster evolution is described in term
of time variations of the probability functionP(n,t) for the
cluster to be of sizen at timet. Then following Mahnkeet al.
@15,16# we write the master equation governing the clus
growth,

] tP~n,t !5w1~n21!P~n21,t !

1w2~n11!P~n11,t !2@w2~n!

1w1~n!#P~n,t !, ~1!

where the cluster sizen meets the inequality 1<n<(N
21). The transition ratesw1(n) and w2(n) are illustrated
in Fig. 2, depending generally on the cluster sizen. The
formation and dissolution of the maximum possible clus
containing all the cars is described by the equation

] tP~N,t !5w1~N21!P~N21,t !

2w2~N!P~N,t !, ~2!

whereas the emergence of the jam seed, the cluster consi
of one car called below precluster, obeys the equation

] tP~0,t !5w2~1!P~1,t !2w1~0!P~0,t !. ~3!

Here the functionP(0,t) is the probability of no cluster on
the road. At the initial timet50 no cluster is assumed to b
on the road,

P~n,0!5dn0 , ~4!

wherednn8 is the Kronecker’s delta. The system of equatio
~1!–~3! subject to the initial condition~4! provides the proba-
bilistic description of the cluster formation.

Special attention should be paid to the question as to w
the precluster is. The model proposes the following. Wh
there is no cluster on the road, i.e., all the cars mo
‘‘freely,’’ the velocity of one of them can randomly drop
down to its valuevclust in the cluster. Such a car is regarde
as the precluster, a size-one cluster. When a precluster
arisen its further evolution follows the scheme shown in F
2. The precluster concept may be justified by recalling

FIG. 2. Schematic illustration of the cluster transformations.
5-3
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KÜHNE, MAHNKE, LUBASHEVSKY, AND KAUPUŽS PHYSICAL REVIEW E65 066125
problem we deal with initially, i.e., the breakdown process
in multilane traffic flow. The cars under consideration ac
ally match small vehicle clusters of the synchronized mo
macrovehicle, arising in traffic flow on a multilane highwa
and comprised of real vehicles moving synchronously at
ferent lanes. Therefore the precluster is actually as a ce
sufficiently small cluster of the synchronized mode. Keep
in mind the relatively low threshold of theF→S transition,
we will assume the precluster generation as well as the
cluster dissipation to be intensive processes so that
‘‘free’’ flow phase, n50, and the precluster state,n51,
come into quasiequilibrium on time scales needed for
critical cluster nucleus to arise. In particular, in no case
precluster emergence limits the cluster evolution, so, the
ticular details of the precluster formation has no substan
effect on the traffic breakdown.

At the next step we should specify the transition ra
w1(n) and w2(n). Let us apply to the optimal velocity
model assuming the velocityv of the ‘‘freely’’ moving cars
as well as the clustered cars to be determined directly by
corresponding headway distanceh according to the formula

v5q~h!ªvmax

hp

hp1Dopt
p

. ~5!

HereDopt is the characteristic value of the headway distan
at which drivers begin to feel themselves ‘‘free’’ and the
velocity approaches the maximumvmax. The parameterp
.1 allows for different shapes of the functionq(h). The
larger the value ofp is, the sharper is the dependenceq(h).
Casep52 is often used@15,16#. A car attaches itself to the
cluster as fast as the distance to the last car in the clu
decreases down to the cluster headwayhclust, enabling us to
write the following ansatz for the attachment rate to the cl
ter of sizen>1:

w1~n!5w1
ov~n!ª

q@hfree~n!#2q@hclust#

hfree~n!2hclust
. ~6!

Applying to a simple geometrical consideration and assu
ing N@1 as well asN2n@1 we get the relationship~illus-
trated also in Fig. 3!

hfree~n!5hclust1~ l car1hclust!
~r lim2r!

r~12h!
, ~7!

FIG. 3. The headway distancehfree in the ‘‘free’’ flow phase vs
the cluster relative volumeh5n/N. A qualitative sketch.
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which together with Eq.~6! gives the attachment rate as
function of the cluster sizen. Here we have introduced th
following traffic flow parameters:r5N/L being the mean
value of the car density on the road, its maximum possi
valuer lim51/(l car1hclust) for the given road, and the relativ
volumeh5n/N of the cluster with respect to the initial vol
ume of the ‘‘free’’ flow state.

In order to compare the cluster growth due to the
attachment with the precluster generation we specify its
in terms of

w1~0!5ew1
ov~0!, ~8!

wheree is a phenomenological factor and we formally s
n50 in expression~6!. Keeping in mind the aforesaid abou
the precluster emergence, we assume the factore to be about
unit, e;1, or at least not to be small enough to limit th
cluster formation, so its particular numerical value is of
importance.

The rate of the cars escaping from the cluster at its do
stream front is written as~see also Fig. 4!

w2~n!5
1

t~n!
ª

12f~n!

t`
1

f~n!

t0
, ~9!

where the valuet(n) can be interpreted as the characteris
time needed for the first car in the cluster to leave it and to
out from its downstream boundary at a distance about
headway distancehfree(n) in the current ‘‘free’’ flow state.
The functionf(n) allows for the dependence of the detac
ment timet(n) on the cluster sizen. We note that expression
~9! is the main original part of the model under conside
ation.

When the cluster is sufficiently large,n@1, it is reason-
able to regard the characteristic timet(n)'t` as a constant
@i.e., f(n)→0 for n@1# as was done in papers@15,16# for
all the values ofn.

For small clusters thet(n) dependence, however, require
special attention. The matter is that the car attachment
w1(n) is considered to be directly determined by the loc
characteristics of the ‘‘free’’ flow phase and the car clust
Thus the dependence of the attachment ratew1(n) on the
cluster sizen arises via the headway distancehfree(n) in the
‘‘free’’ flow being a function of n, i.e., w1(n)
5w1@hfree(n),hclust#. Therefore the attachment rate is act

FIG. 4. The detachment ratew2(n) vs the cluster sizen. A
qualitative sketch.
5-4
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PROBABILISTIC DESCRIPTION OF TRAFFIC BREAKDOWNS PHYSICAL REVIEW E65 066125
ally an explicit functionw1(r,h) of the mean car densityr
and the cluster relative volumeh only and, so, exhibits mi-
nor variations on scalesdn!N. As will be seen below, ex-
actly this feature is essential rather than the particular fo
of w1(r,h) given here. To describe traffic breakdown
least one of the kinetic coefficientsw1(n) andw2(n) has to
be a direct function of the cluster sizen for its relatively
small values corresponding to the formation of the criti
nucleus. We associate this dependence with the escaping
w2(n) that, in contrast to the attachment ratew1(n), exhib-
its substantial variations in the regionn&n0;20.

The parametern0 actually divides the car clusters into th
large cluster group,n@n0, for which the escaping rate i
constant,f(n)→0, and the group of small clusters,n&n0,
whose dissolution is affected substantially by the sizen. This
assumption is based on the fact that there should be a va
of possible manoeuvres for a driver to escape from a su
ciently small cluster on a multilane highway when the lan
are not too crowded.

Expression~9! takes into account this effect via the fun
tion f(n) running from 1 to 0 as the cluster sizen increases,
so, f(1).1 and f(n)→0 as n→`. In particular, for a
small neighborhood of the precluster size,n;1, the valuet0
of t(n) gives us actually the lifetime of the preclusters and
assumed to be less than the escaping time from a large
ter, i.e.,t0,t` . Naturally, for the case of no cluster on th
road we have to setw2(0)50. The main results will be
obtained below actually applying to the general properties
the dependencew2(n), however, for the sake of simplicity
we will adopt the following ansatz forn>1:

f~n!ªf@x#ux5n/n0
ª

1

~11x!q
, ~10!

where the exponentq.1 is regarded as a given constant. W
point out once more that the dependence of the characte
time t(n) on the cluster size is crucial because it is resp
sible for the existence of the metastable ‘‘free’’ flow phas

The system of equations~1!–~3! subject to the initial con-
dition ~4! with the relationships~6!, ~8!, and ~9! forms the
proposed probabilistic model for the car aggregation. Wit
this model we will analyze the characteristic features of
large cluster emergence and the shape of the fundam
diagram, i.e., the ‘‘flow volume–car density’’ relation in th
vicinity of traffic breakdown. In particular, in the adopte
terms the flow volumej (n) for the given traffic flow state,
i.e., when a cluster of sizen arises on the road, is written a
@15,16#:

j ~n!5~12h!rq@hfree~n!#1hrq@hclust#. ~11!

We will get the fundamental diagramj 5 j (r) by averaging
expression~11! with respect to the distributionP(n,t).

B. Equilibrium distribution

To clarify the characteristic features of the cluster form
tion let us analyze, first, the stationary cluster size distri
tion Peq(n). The system of equations~1!–~3! subject to the
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initial condition ~4! admits the stationary solutionPeq(n)
meeting the zero ‘‘probability’’ flux in the cluster size spac

w1~n21!Peq~n21!2w2~n!Peq~n!50.

It is evident that

Peq~n!

Peq~n21!
5

w1~n21!

w2~n!

holds, which enables us to write the expression

Peq~n!}exp$2V~n!%,

where the functionV(n) ~called below the car growth po
tential! is specified forn>2 by the formula

V~n!52 (
n851

n21

ln@t`w1
ov~n8!#

1 (
n852

n

lnF11
~t`2t0!

t0
f~n8!G . ~12!

Both terms in Eq.~12! vary weakly as the argumentn
changes by one, enabling us to convert sum~12! into an
integral with respect to the cluster sizen treated as a con
tinuous variable,

V~n!5V`~n!1V0~n!, ~13!

where

V`~n!.2E
0

n

dn8ln$t`w1
ov@hfree~n8!#%, ~14!

V0~n!.E
0

n

dn8lnF11
~t`2t0!

t0
f~n8!G . ~15!

The former term in Eq.~12! or Eq. ~13!, i.e., the compo-
nentV`(n) called below the growth potential mainly cha
acterizes whether a stable car cluster can arise on the
under the given conditions and specifies its size becaus
exhibits substantial variations on large scales exceeding
stantially the sizen0. By contrast the latter one, the comp
nent V0(n), describes the formation of the critical clust
nucleus and, so, the breakdown phenomenon. Indeed, as
lows from Eqs.~10! and~15! the potentialV0(n) is constant
for n@n0 and, thus, cannot affect the growth of a large clu
ter already formed on the road. Besides, within the c
tinuum approximation we have ignored the details of t
cluster distribution in the region including both the poin
n50 and n51 and expand the cluster spacen>1 to the
whole axisn>0.

Let us, first, analyze the condition of the cluster em
gence dealing with the potentialV`(n) only. Applying to
Fig. 5 we can see that a large cluster can arise on the roa
principle, if there exists a value of the headway distancehc
meeting the equality

t`w1
ov@hc#51, ~16!
5-5
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which will be assumed to hold beforehand. In particul
within approximation ~6! together with Eq.~5! for Dopt
@hclust andp52 this assumption holds ift`vmax.2Dopt and
the critical headway reads

hc
(2)5

1

2
~t`vmax1A~t`vmax!

224Dopt
2 !,

whereas forp→` andt`vmax.Dopt we have

hc
(`)5t`vmax.

The ‘‘free’’ flow phase will be stable if the initial headwa
distancehfree(0).hc and unstable otherwise.

Let us justify these statements. The growth poten
V(n) is actually the sum of ln@w2(n)/w1(n)# over n @see
formula ~12!#. So, in the region where the integrand of E
~14! meets the inequalityt`w1

ov@h#,1 and the potentia
V`(n) is an increasing function ofn, the cluster dissolution
is more intensive than the car attachment. Under these
ditions the cluster size on the average decreases in time.
same concerns the time dependence of the headway dis
hfree(n) in the ‘‘free’’ flow phase because the value
hfree(n) decreases as the cluster becomes smaller~Fig. 3!,
which is also illustrated by arrows in Fig. 5. Sinc
t`w1

ov@h#,1 for h.hc any randomly arising cluster tends
disappear and, consequently, the ‘‘free’’ flow phase is sta
when hfree(0).hc . In this case the potentialV`(n) pos-
sesses one minimum located at the boundary pointn50 ~or
n51 what is the same in the continuum description!.

Otherwise, hfree(0),hc , there is a regionhfree(0),h
,hc where t`w1

ov@h#.1 and the car attachment rate e
ceeds that of the cluster dissolution and a cluster occurrin
the corresponding ‘‘free’’ flow state tends to grow, inducin
the further increase in the headway distancehfree(n). In this
case the ‘‘free’’ flow phase is unstable and the cluster w
continue to grow until the value ofhfree(n) reaches the criti-
cal pointhc , where the car attachment and the cluster dis
lution balance each other. Whence it follows, in particul
that the developed cluster is of the sizenclust obeying the
equation

FIG. 5. The attachment ratew1
ov@h# vs the headway distanceh

and the stability regions of the ‘‘free’’ flow phase.
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hfree~nclust!5hc ~17!

and the V`(n) has a minimum at the internal pointn
5nclust. In the present paper we will ignore the existence
another region where the equalityt`w1

ov@h#,1 also holds
for very dense traffic flow, which has been considered
papers@15,16#.

Relationship~7! enables us to rewrite the instability con
ditions in terms of the mean car densityr. The critical value
rc of the car density is the solution of the equationhfree(0)
5hc , whence we immediately get

rc15r lim

l car1hclust

l car1hc
. ~18!

Then the stable state of the ‘‘free’’ flow corresponds to t
inequalityr,rc1 and it loses the stability whenr.rc1. In
the latter case a large cluster of sizenclust(r)5hclust(r)N
arises on the road and its relative volume is

hclust~r!5
hc1 l car

hc2hclust

r2rc1

r
. ~19!

In the given analysis we have ignored the dependenc
the cluster dissolution ratew2(n) on the sizen and, thereby,
the considered picture describes actually the ‘‘free’’ flo
cluster transition of the second order. It does not allow
the metastable state of the ‘‘free’’ flow phase and cor
sponds to the continuous transition from the traffic st
without cluster on the road to the formation of a certa
cluster whose relative volume changes continuously fr
zero as the car density penetrates deeper in the instab
region @see formula~19!#. Consequently, this approximatio
cannot explain the traffic breakdown and on the phase
gram matches solely the stable branches ‘‘f ’’ and ‘‘ c’’ of the
‘‘free’’ flow and the traffic with a developed cluster, respe
tively ~Fig. 6!. Nevertheless, exactly the given approxim
tion describes the stable branches of the fundamental
gram and, moreover, the metastable branch is a continua
of the branch ‘‘f ’’ into the instability region. Keeping in
mind the latter, we present also the expression specify
these branches,

FIG. 6. The fundamental diagram in the vicinity of the brea
down region.
5-6
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j fc~r!5H rq@hc1~hc1 l car!~rc12r!/r# if r,rc1

j c12G~r2rc1!/rc1 if r.rc1 ,

where the constants are

j c15rc1q@hc#,

G5
~hc1 l car!

~hc2hclust!

rc1

r lim
~rc1q@hc#2r limq@hclust# !.

It should be noted that this expression has been obtaine
substituting the maximum probability valuenclust of the clus-
ter size into expression~11! instead of averaging it over th
distributionPeq(n). The latter is justified because the effe
of the cluster size fluctuations is ignorable due toN@1.

Now we analyze the possible metastable states of
‘‘free’’ flow phase. In order to do this we should take in
account both the components of the growth potentialV(n).
Since the functionV0(n) exhibits remarkable variations i
the regionn&n0 only and, thus, the sizenc of the critical
nucleus also belongs to this region, we may confine our c
sideration to clusters whose sizen is much less than the fina
cluster sizenclust attained after the instability development.
addition, for simplicity we will regard the value (t`

2t0)/t` as a small parameter, which enables us to exam
solely a small neighborhood of the instability boundary,
,r2rc1!rc1.

In this case the value oft`w1
ov@hfree(n)# is practically

constant and can be approximated by the expression

ln$t`w1
ov@hfree~n!#%.g

r2rc1

rc1
, ~20!

where the coefficient

g5
~ l car1hc!

hc
Ud ln w1

ov@h#

d ln h
U

h5hc

is about unity,g;1, in the general case. In particular, w
have the rigorous equalityg51 for stepwise dependence o
q(h) @if we set p5` in expression~5!# and Dopt@ l car,
hclust. Expression~20! together with formula~10! allows us
to represent the dependence of the growth potentialV(n) on
the cluster sizen as

dV~n!

dn
'

~t`2t0!

t0
f~n!2g

~r2rc1!

rc1

5
~t`2t0!

t0
S n0

n01nD q

2g
~r2rc1!

rc1
. ~21!

The first term on the right-hand side of Eq.~21! is due to the
increase in the cluster dissolution rate forn&n0, whereas the
latter one is proportional to the cluster growth rate in t
region of large values ofn. The resulting value of the deriva
tive dV(n)/dn characterizes the direction of the cluster ev
lution. If it is positive, dV(n)/dn.0, i.e., the potential
V(n) is an increasing function ofn, then the cluster disso
06612
by

e

n-

e

-

lution is the dominant process and the cluster of sizen tends
to shrink. Otherwise, whendV(n)/dn,0, it will grow.

The former term attains its maximum atn50, so, accord-
ing to Eq. ~21! the derivativedV(n)/dn is negative for all
the possible values of the cluster size under consideratio
<n!nclust when

r.rc2ªrc1F ~t`2t0!

gt0
11G . ~22!

In this case the ‘‘free’’ flow phase becomes absolutely u
stable. Under the opposite condition,rc1,r,rc2 there is a
certain valuenc at which the derivativedV(n)/dn changes
the sign~Fig. 7!. Setting the left-hand side of Eq.~21! equal
to zero we get the relationship

f~nc!5
r2rc1

rc22rc1
, ~23!

which together with ansatz~10! gives the estimate

nc5n0F S rc22rc1

r2rc1
D 1/q

21G , ~24!

FIG. 7. The form of the cluster growth potentialV(n) in the
breakdown region~upper window!, the value of2dV(n)/dn pro-
portional to the mean rate of cluster growth vs the cluster sizen and
~lower window! the growth potentialV(n) itself. The present figure
has been obtained using ansatz~10! with the exponentq52 and the
chosen value of the vehicle densityr gives the ratio of the critical
nucleus sizenc to the characteristic valuen0 equal tonc /n050.8.
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well justified except for small neighborhoods of the boun
ary pointsrc1 andrc2. If n,nc the derivative is positive and
the cluster should decrease in size, i.e., the ‘‘free’’ flow ph
is stable with respect to the emergence of such small clus
However, if a certain cluster of sizen.nc has already
formed, for example, due to random fluctuations, then it w
grow and a large cluster of sizenclust arises on the road
becausedV(n)/dn,0 in the regionn.nc .

In other words, we have shown that the dependence o
dissolution ratew2(n) on the cluster sizen&n0 makes the
‘‘free’’ flow phase metastable when the car density belon
to the intervalrP(rc1 ,rc2) ~branch ‘‘m’’ in Fig. 6!. The
formation of a large cluster,n@n0, proceeds via generatio
of the critical nucleus whose sizenc is estimated by expres
sion ~24!. In order to find the generation rate of the critic
nuclei and, thus, the breakdown frequency we should c
sider the transient processes in the cluster growth, whic
the subject of the following section.

C. Continuum approximation: The breakdown probability

In order to apply well developed techniques of the esc
ing theory~see, e.g., Ref.@19#! to the analysis of the traffic
breakdown probability we approximate the discrete ma
equation~1! by the corresponding Fokker-Planck equation
is feasible because in the case under consideration the ki
coefficientsw1(n), w2(n), first, vary smoothly on scale
about unity and, second, are approximately equal to e
other, uw1(n)2w2(n)u!w2(n). The latter conditions en
able us to treat the argumentn as a continuous variable an
to expand the functionsw1(n61), w2(n61), and P(n
61,t) into the Taylors series. In this way and, in additio
taking into account expression~9! we reduce Eq.~1! to the
following Fokker-Planck equation:

t`] tP~n,t !5]n@]nP~n,t !1P~n,t !]nV~n!#, ~25!

where the potentialV(n) is given by formula~13! in the
general form. However, in the case under consideration
ratios n/N, (r2rc1)/rc1, and (t`2t0)/t0 are regarded to
be sufficiently small and it is possible to expand the poten
V(n) in the three parameters and to remain the leading te
only. In this way we get

V~n!5
~t`2t0!

t0
n0H E

0

n/n0
dxf@x#2f@xc#

n

n0

3F12
n

2nclust~r!G J , ~26!

where xc5nc /n0 and we have setV(0)50. Equation~2!
transforms into the boundary condition at infinitely dista
points, which is imposed on the probability flux

J~n!ª2]nP~n,t !2P~n,t !]nV~n!

and requires it to be equal to zero,J(`)50. Equation~3!
describing the precluster generation is reduced, in turn, to
zero boundary condition imposed on the probability fl
J(n) formally atn50, i.e.,J(0)50. The latter is justified by
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the assumed quasi-equilibrium between the ‘‘free’’ flo
phase and the preclusters. And, finally, the initial conditi
~4! can be rewritten as

E
0

`

dnP~n,t !51.

When the car density belongs to the intervalr
P(rc1 ,rc2) and the ‘‘free’’ flow phase is metastable th
form of the growth potentialV(n) in the regionn&n0 is
shown in Fig. 7. The ‘‘free’’ flow phase being in quasiequ
librium with preclusters matches the local minimum atn
50 separated from the region of the stable cluster gro
n.nc by the potential barrierVc . The value of this potentia
barrier is estimated as

Vc.
~t`2t0!

t0
n0vFnc

n0
G , ~27!

where the functionv is defined as

v@xc#ªE
0

nc /n0
dxxS 2

df@x#

dx D . ~28!

In particular, for ansatz~10! with exponentq52 expres-
sion ~27! becomes

Vc.
~t`2t0!

t0
n0

xc
2

~11xc!
2

. ~29!

Moreover, in the limitxc!1 we have

v@xc#.
1

2
rxc

2 , with the constantr 52
df@x#

dx U
x50

,

as follows from expression~28!, and the general formula fo
the potentialVc can be written as

Vc.
~t`2t0!

2t0
rn0xc

2 . ~30!

In the same limit expression~23! gives us

xc.
~rc22r!

r ~rc22rc1!
. ~31!

The main much deeper minimum of the potentialV(n) is
located atn5nclust@n0.

We have demonstrated that a precluster must climb o
the potential barrierVc at the pointnc to convert into a large
stable cluster. It is implemented through random fluctuatio
carrying the cluster size up to the critical valuenc . In these
terms the traffic breakdown is the classical problem of esc
ing from a potential well described by the Fokker-Plan
equation~25!. The latter analogy enables us to write dow
the estimate for the frequencynbd of the traffic breakdown
processes depending on the given vehicle density in
‘‘free’’ flow state. Namely, as shown in Appendix
5-8
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nbd.
1

A2pn0t`

S t`2t0

t0
D 3/2

~12f@xc# !uf8@xc#u1/2

3expH 2
~t`2t0!

t0
n0v@xc#J , ~32!

which is well justified for the car densityr belonging to the
interval rc1,r,rc2 except for certain sufficiently sma
neighborhoods on the critical pointsrc1 , rc2. Ansatz ~10!
with the exponentq52 together with formula~23! enables
us to rewrite expression~32! as

nbd.
1

Apn0t`

S t`2t0

t0
D 3/2

~12D!D3/4

3expH 2
~t`2t0!

t0
n0

~12D!2

~11D1/2!2J . ~33!

Here we have introduced the quantity

Dª

r2rc1

rc22rc1
~34!

treated as a dimensionless overcriticality measure show
how deep the system penetrates into the metastability reg
D50 corresponds to the valuerc1 of the vehicle density
where a jam can emerge in principle andD51 matches the
vehicle densityrc2 after exceeding which no traffic stat
except for jams can exist at all~Fig. 6!.

D. Frequency of traffic breakdown during a fixed
time interval

Experimentally, traffic breakdown is typically analyze
detecting a significant drop in the vehicle speed during
certain fixed time intervalTobs about several minutes an
then drawing the relative frequency of these events vs
traffic volume @9–12#. In order to compare this represent
tion with the obtained results let us consider them in m
detail.

As follows from expression~22! the density interval
(rc1 ,rc2) inside which the traffic jam emerges by the nuc
ation mechanism is of the thickness

~rc22rc1!5rc1

~t`2t0!

gt0
.

According to the experimental data@9–13# the thickness of
the traffic volume interval inside which the traffic breakdow
demonstrates the probabilistic behavior is about its l
boundary in magnitude. So we have to regard the ratiot`

2t0)/t0 also as a value about unity,

~t`2t0!

gt0
;1. ~35!

Thereby, settingn0520 we conclude that in the general ca
wherenc;n0 the potential barrier isVc;5 corresponding to
the exponential factor exp$2Vc%;0.731022. Then setting
06612
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t`;2 s and estimating the preceding cofactor
1/(A2pn0t`) we find the characteristic rate of the traffi
breakdown to about 1/50 min21 in the general case. So th
real traffic breakdown events seem to be observed in c
where the vehicle density comes to the upper boundaryrc2.
The latter allows us to confine our analysis formally to t
limit case

xc!1⇔~rc22r!!~rc22rc1!. ~36!

Then estimating the probabilityFbd of detecting a traffic
breakdown during the observation time intervalTobs asFbd
5Tobsnbd we obtain from Eq.~32! the expression

Fbd~D!5
Tobs

tbd
2Vc

1/2exp$2Vc%, ~37!

where

Vc5
~t`2t0!

2r t0
n0~12D!2 ~38!

and we have introduced the time scale

tbd5
2Apt0

r ~t`2t0!
n0t` , ~39!

giving us the characteristic time of the breakdown em
gence. In deriving Eq.~37! we have also taken into accoun
formulas~10!, ~30!, and~31! and number 2 remained directl
as cofactor because the maximum of the functionz1/2exp
(2z) is about 0.43. Naturally, we have to confine ourselves
such values of the vehicle density for whichFbd<1 holds
because traffic flow with higher values of the vehicle dens
cannot exist on these time scales. For the following val
r 52, the ratio (t`2t0)/t0;1, t`;2 s, andn0;20 ex-
pression~39! gives us the estimatetbd;1 min of the char-
acteristic breakdown time. It should be pointed out that
latter estimate does not contradict the evaluation of
breakdown rate given at the beginning of the present sec
because it holds only in the regionVc@1.

Figure 8 illustrates the obtained results depicting

FIG. 8. The traffic breakdown probability vs the depth (r
2rc1)/(rc22rc1) of penetration into the metastability region. I
calculating ansatz~10! with the exponentq52 has been used.
5-9
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breakdown probability for different values of the observati
time Tobsmeasured in units oftbd vs the depth of penetratin
into the metastability region. It should be pointed out that
drawing Fig. 8 we have applied formula~33! rather than Eq.
~37! in order to have a possibility to go out of the fram
works of the formal limit~36!. The latter is considered her
to clarify the obtained results only. To make the form of t
Fbd(D) dependence more evident we apply again the for
limit case~36! assuming the ratiomªTobs/tbd to be a large
parameter. Then analyzing a small neighborhood of the p
rm* specified by the equality

12Dm* 'F2r ln~2m!t0

~t`2t0!n0
G1/2

~40!

we get

Fbd~r!5expS r2rm*

r̄m
D , ~41!

where the vehicle density scale is

r̄m5~rc22rc1!F r t0

2 ln~2m!~t`2t0!n0
G1/2

. ~42!

Therefore, in a rough approximation theFbd(r) dependence
is a simple exponential function whose scaler̄m is approxi-
mately a constant value@because the function ln(m) shows
weak variations form@1#. Changing the observation dura
tion Tobs practically shifts the cutoff pointrm* only.

III. COMPARISON WITH EXPERIMENTAL RESULTS

We recall once more that we compare the model de
oped for traffic flow on a homogeneous road with the exp
mental data obtained near highway bottlenecks~see also In-
troduction!. So this comparison is justified if the model ca
explain the characteristic features of the observed phen
enon based on the general properties of traffic flow, whic
the main goal of the present section.

Experimental investigations of the traffic breakdown
garded as a probabilistic phenomenon have been carried
by several authors~see, e.g., Refs.@9–12,18#!. Elefteriadou
et al. @9# actually pointed out the fact that traffic breakdow
at ramp merge junctions occurs randomly without prec
relation to a certain fixed value of traffic volume. A mo
detailed analysis of the breakdown probability has be
made in papers@10–12,18#. These observations show th
traffic breakdown can occur inside a wide interval of traf
volume from about 1500 veh/h/l~vehicles per hour per lane!
up to 3000 veh/h/l. The real dynamics of traffic breakdo
near bottlenecks and the developed structure of the c
gested traffic flow are sufficiently complex as was exhibi
by Kerner @13#. In particular, Kerner demonstrated that t
synchronized mode of traffic flow in the vicinity of highwa
bottleneck is locally metastable under the discharged do
stream traffic flow of volumej varying in the same interval
The latter enables us to estimate the detachment timet`

playing significant role in the presented model. In fact,
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noring the velocityq(hclust) of cars in the cluster as well a
the headway distancehclust in ansatz~6! we find that the
lower boundaryrc1 of the metastability region meets th
traffic volume

j c15rc1q~hc!'w1
ov@hc#5

1

t`
;1800 veh/h/l.

We find immediately the estimatet`;2 s, which is in
agreement with the value adopted previously in pap
@15,16#. Like in the preceding section, here we use the e
mates of the quantitiesn0;20 according to the experimenta
data depicted in Fig. 1, taking (t`2t0)/t0;1 from the gen-
eral consideration.

In order to compare the obtained results and the availa
experimental data we have applied the latest materials
sented in detail by Lorenz and Elefteriadou@12#. The break-
down phenomenon was investigated in traffic flow near t
bottlenecks of Highway 401, one of Toronto’s primary traffi
arteries. The detectors were located right after the on ra
within several hundred meters downstream. So the dynam
of traffic breakdown observed at these places seems to
mainly due to local internal properties of traffic flow dis
cussed in the present paper. The complex spatial structu
the induced congested phase including moving wide and
row jams reported by Kerner@13# should emerge above th
detectors upstream. We consider in detail the data obta
for one of these bottlenecks~site ‘‘A’’ in paper @12#!. The
paired detectors were located in each of the three lanes
were instrumented to provide vehicle count and speed e
mates continuously at 20 s intervals. A breakdown event w
fixed via the velocity drop below 90 km/h, the middle poi
of a certain gap in the velocity field visually separating t
congested and free traffic flow states. Besides, only th
disturbances that caused the average speed over all the
to drop below 90 km/h for a period of 5 min or more we
considered a true breakdown. The latter enabled the aut
to filter out large amplitude fluctuations in the mean vehi
velocity not leading to the traffic breakdown. Figure 9 exh
its the obtained probability~relative frequency! of the traffic
breakdown events during 5 min and 15 min intervals vs
traffic volume partitioned within 100 veh/h/l steps. We no
that Fig. 9 does not show the available 1 min interval d
because the corresponding breakdown probability is not
nificant for all the observed values of traffic volume exce
for the upper boundary 2800 veh/h/l, certainly due to its r
occurrence.

The continuous curves in Fig. 9 present our attempts to
the obtained theoretical dependence in the given experim
tal data. Namely, these curves describe the breakdown p
ability estimated asFbd5Tobsnbd, where the latter cofactor is
given by the expression~33! within the replacementD⇐( j
2 j c1)/( j c22 j c1) @see expression~34!# and we have used th
following values of the critical traffic volumesj c1
51200 veh/h/l and j c253400 veh/h/l, the characteristi
breakdown timetbd52.5 min @see expression~39!#, and set
the productn0(t`2t0)/t0525. Keeping in mind the afore
said, all the adopted values are quite reasonable, inclu
the estimatej c253400 veh/h/l that seems extremely high
5-10



t o
r-

no
at

a
i

th

te
n
th
r

ed
ize
n

r i
te
e
wa
d
d

as
w

es
fre

ib

e
e
an

by
re-
ing
ro-

ve-
le-

en-

car
car

the
ion
in

e
pri-
rac-

ex-
c
l-

ven
cho-
not
ar,
rnal

in.
of
ur-
sed
tic
val

ith-
as-
ed
ed
on
fect
i,
ear
wn
oads.
wn
ized
cor-
les.

p-

5

e

PROBABILISTIC DESCRIPTION OF TRAFFIC BREAKDOWNS PHYSICAL REVIEW E65 066125
first glance. Indeed, this value is no more than a resul
approximating thej (r) dependence by a linear function fo
mally into the region of high vehicle densities.

IV. SUMMARY AND CONCLUSION

We have considered the traffic breakdown phenome
regarded as a random process developing via the nucle
mechanism. The origin of critical jam nuclei proceeds in
metastable phase of traffic flow and seems to be located
side a not too large region on a highway, for example, in
close proximity of a highway bottleneck@3,6#. The induced
complex structure of the congested traffic phase is loca
upstream of the bottleneck@13#. Keeping these properties i
mind, we have applied the probabilistic model regarding
jam emergence as the development of a large car cluste
highway. In these terms the traffic breakdown proce
through the formation of a certain car cluster of critical s
in the metastable vehicle flow, which enabled us to confi
ourselves to the single cluster model.

We assumed that, first, the growth of the car cluste
governed by attachment of cars to the cluster whose ra
mainly determined by the mean headway distance betw
the cars in the vehicle flow and, may be, also by the head
distance in the cluster. Second, the cluster dissolution is
termined by the car escape from the cluster whose rate
pends on the cluster size directly. To justify the latter
sumption we apply the modern notion of the traffic flo
structure~see Refs.@1–3#!. Namely, the jam emergence go
mainly through the sequence of two phase transitions:
flow → synchronized mode→ stop-and-go pattern@7#. Both
of these transitions are of the first order, i.e., they exh
breakdown, hysteresis, and nucleation effects@6#. Therefore
considering the final stage of the jam emergence we hav
regard the synchronized mode as the metastable phas
actly inside which a critical jam nucleus appears due to r

FIG. 9. The traffic breakdown probability during 5 min and 1
min intervals vs the traffic volume~after Lorenz and Elefteriadou
@12#!. The continuous curves present the dependence~33! fitting
these experimental data in the frameworks of the replacem
D⇐( j 2 j c1)/( j c22 j c1) @see expression~34!# under the following
values of the critical traffic volumesj c151200 veh/h/l andj c2

53400 veh/h/l, the characteristic breakdown timetbd52.5 min,
and the productn0(t`2t0)/t0525.
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dom fluctuations. The synchronized mode is characterized
strong multilane correlations in the car motion and, as a
sult, all the vehicles in a certain effective cluster spann
over all the highway lanes move as a whole. Thus the p
posed probabilistic description deals with actually macro
hicles comprising many individual cars. The available sing
vehicle experimental data@8# present the correlation
characteristics of the synchronized mode, which have
abled us to estimate the characteristic dimensionn0
;20–30 of the car cluster entering the dependence of the
detachment rate on the cluster size. Namely, for small
clusters,n&n0, the characteristic detachment timet0 should
be substantially less than this timet` for large clusters,n
@n0.

We have written the appropriate master equation for
cluster distribution function and have analyzed the format
of the critical car cluster due to the climb over a certa
potential barrier. The inequalityn0@1 has opened for us th
way to convert the discrete master equation to the appro
ate Fokker-Planck equation and find all the required cha
teristics of the traffic breakdown.

The obtained results are compared with the available
perimental data and, in detail, with the probability of traffi
breakdown in the vicinity of bottlenecks vs the traffic vo
ume presented by Lorenz and Elefteriadou@12#. It turned out
that the theoretical curves can be fitted closely to the gi
experimental data using values of the main parameters
sen based on the general properties of the traffic flow
related directly to the breakdown dynamics. In particul
first, we have demonstrated that the characteristic inte
time scaletbd of the breakdown development is abouttbd
;n0t` ~we recall thatt`;2 s is the characteristic time
during which a car can individually leave a cluster!. Hence
we get the estimate of the breakdown time scale about 1 m
The latter justifies the widely used probabilistic technique
the breakdown investigation based on fixing this event d
ing a time interval of several minutes. Second, the propo
model explains why the traffic breakdown as a probabilis
phenomenon is observed inside a sufficiently wide inter
of the traffic volume, namely, the thicknessD j of this layer
can attain its low boundaryj c1 in magnitude. The matter is
that D j / j c1;(t`2t0)/t0;1.

Both of these results have been obtained practically w
out any fitting parameters applying only to the general
sumptions on the traffic flow theory. Namely, we assum
the traffic breakdown to develop inside the synchroniz
mode of traffic flow and used its characteristic correlati
properties. Thereby a highway bottleneck seems to af
mainly the particular properties of the critical jam nucle
which increases the probability of the jam emergence n
highway bottlenecks. The physics of the traffic breakdo
must be the same for homogeneous and heterogeneous r

Concluding the aforesaid, we state that traffic breakdo
is a mesoscopic process, as it must be for the synchron
mode, whose characteristic spatial and temporal scales
respond to car clusters made of a large number of vehic
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APPENDIX: ESCAPING RATE FROM A BOUNDARY
WELL

In Sec. II C we have obtained the Fokker-Planck equat
~25! governing the evolution of car clusters treated as r
dom wandering in the space of their sizen. It has turned out
that near the threshold the precluster domain is separ
from the large cluster region by a potential barrierVc , there-
fore the formation of the clustered phase should proc
through the nucleation mechanism~Fig. 7!. In other words,
for a large cluster to emerge on the road its critical nucl
nc has to arise via random fluctuations of the cluster size
the precluster region. Thereby in order to describe the clu
formation we need an expression specifying the rate of
critical nucleus generation, being the subject of the pres
appendix.

Mathematically the description of the critical nucleus ge
eration is equivalent to the problem of a particle escap
form the corresponding potential barrier~Fig. 10!. Thereby
the rate of the critical nucleus generation, i.e., the freque
of the traffic breakdownnbd is represented in terms of th
probability densityF(t) for this particle to escape from th
potential well at a given timet provided initially,t50, it has
been placed near the local minimum~heren50). Namely,

nbd5F~10!, ~A1!

where the value10 of the argumentt means that we con
sider time scales exceeding substantially the duration o
the transient processes during which the distribution of
particle inside the potential well attains locally quasiequil
rium.

Since the potential relief under consideration is rather s
cial we prefer to recall briefly the way of deriving the pro
ability F(t) referring a reader to the specific literature~see,
e.g., Ref.@19#! for details.

The concept of potential well implies that the barrier
sufficiently high, Vc@1, therefore the particle can clim
over it due to rare fluctuations lifting the particle to points
the potential barrier whereV(n)@1. If such an event doe
not lead to escape, the particle will drift back to the neig

FIG. 10. Escaping problem simulating the critical nucleus f
mation
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borhood of the local minimumn50 whose thickness is
specified by the inequalityV(n)&1. Thereby the subsequen
attempts of escaping may be considered as being mutu
independent. After the particle has climbed over the bar
the force2dV(n)/dn carries it away to distant points, mak
ing the return impossible. So from this point of view we m
refer to the particle being inside the potential well or havi
escaped from it as two of its possible states without spec
ing the particular position. Therefore the probabilityP(t
2t8) that the particle remains inside the well at timet, if it
has been placed there at timet8, obeys the equation

P~ t !5P~ t2t8!P~ t8! for 0,t8,t.

We get the general expression for the functionP(t),

P~ t !5expS 2
t

t life
D ,

where t life is a certain constant specified by the particu
properties of a potential well. The latter formula gives
immediately the general form of the escape probability

F~ t !52
dP~ t !

dt
5

1

t life
expS 2

t

t life
D . ~A2!

In order to find the lifetimet life we will deal with the
Laplace transformFL(s) of the escape probabilityF(t),

FL~s!ªE
0

`

dtexp~2st!F~ t !5
1

11st life
, ~A3!

whence it follows that in the expansion ofFL(s) with respect
to s around the points50,

FL~s!512st life1•••, ~A4!

the first order term directly contains the desired lifetime
the coefficient.

Following the standard approach@19# we reduce the es
caping problem to finding the first passage time probabil
In other words, we assume the particle never comes bac
the potential well if, after climbing the barrier, it reache
points whereVc2V(n)*1 ~Fig. 10!. The particle may be
withdrawn from the consideration or, what is the same
will be trapped when it reaches for the first time any fix
point n* in this region. The time it takes for the particle t
reach the pointn* after overcoming the barrier at the critica
point nc is ignorable in comparison with the characteris
waiting time for critical fluctuations. Thereby the functio
F(t) specifies actually the probability of passing~reaching!
the point n* for the first time at the time momentt. This
construction enables us to introduce a more detailed rela
function F(n,t) giving the probability for the particle ini-
tially placed at the point 0,n,n* to reach first the right
boundaryn* of the region under consideration at the tim
moment t. The left boundaryn50 is impermeable for the
particle. Then using the standard technique based on
backward Fokker-Planck equation conjugated with Eq.~25!
we obtain the governing equation for the functionFL(n,s),

-
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t`sFL5]n
2FL2@]nV~n!#@]nFL# ~A5!

subject to the boundary conditions

FL~0,s!5FL~n* ,s!51. ~A6!

It directly follows that the first order termw(n) in the ex-
pansion of the Laplace transformFL(n,s) with respect tos,

F~n,s!512sw~n!,

obeys in turn the equation

]n
2w~n!2@]nV~n!#@]nw~n!#52t` ~A7!

subject to the boundary conditions

]nw~0!50 and w~n* !50. ~A8!

The solution of the system~A7! and ~A8! has the form

w~n!5t`E
n

n*
dn8eV(n8)E

0

n8
dn9e2V(n9) ~A9!

and the valuew(0) gives us the desired lifetime,
e

e

-

e

06612
t life5w~0!. ~A10!

Inside the potential well the functionw(n) takes practically a
constant value mainly contributed by the pointsn9 belonging
to the well bottom, i.e., to the regionV(n9)&1 and by the
pointsn8 located near the top of the potential barrier whe
V(nc)2V(n8)&1. This feature leads us immediately to th
approximation

t life'A2pt`@ u]n
2V~nc!u#21/2@]nV~0!#21eV(nc),

~A11!

which is the main result of the present appendix.
In particular, for the potentialV(n) specified by expres-

sion ~21! or ~26!, formula ~A11! gives

t life'A2pn0t`S t0

t`2t0
D 3/2

3~12f@xc# !21~ uf8@xc#u!21/2eV(nc). ~A12!

Formulas~A1!, ~A2!, ~A12!, and ~27! give us expression
~32!.
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